Musicians as athletes

I affirm this with the conviction of someone who knows these two universes well: musicians are high-performance athletes, but they do not treat themselves as such. Professional musical performance and high-performance sports require very similar levels of commitment, as well as physical and mental demands. The time, commitment and consistency required to achieve a high level of performance playing an instrument or performing a specific sport skill have much more in common than one might initially think. Some differences will lie in the fact that, in general, neuromuscular recruitment associated with playing an instrument has a greater focus on fine motor skills (i.e. short movements of greater precision and performed mainly with the limbs extremities) and less at the level of gross motor skills (i.e. larger movements involving larger muscle groups) that we normally associate with sports movements. However, it should be clarified that both large muscle groups play an important role, particularly at a postural level, in instrumental performance, and the smaller muscles associated with fine motor skills also play a fundamental role in most sports movements.

For example, if we establish a parallel between playing the violin and performing a given sport specific skill in tennis, we find that, although at different levels, a balance of fine and gross motor control is necessary for better performance in both activities. When we play the violin, we want to maintain a high and controlled posture so that holding the violin with the non-dominant arm and handling the bow with the dominant arm allows the fine work of the hands and fingers to occur as efficiently as possible. Now, if the musculature involved in the stabilization of the trunk and in the elevation of the arms is weak, fatigue sets in more quickly resulting in postural loss, in an execution carried out with greater muscle tension and consequently in a worse performance. In the case of the serve in tennis, due to the high demand for motor coordination and strength involving all the large muscle groups of the lower and upper body, there is also a need for high levels of fine motor skills coordination regarding wrist, hand and finger movements, in order to implement a given spin effect and the desired direction to the ball.

In fact, both musical and sports performance involve neuromuscular recruitment to produce movement and work that requires precision, speed, endurance and strength. In addition, and particularly at a professional level, playing an instrument and playing a sport are activities that require long hours of repetitive movements that, combined with poor physical conditioning, can lead to a variety of clinical conditions. It is unthinkable that a highly competitive athlete does not follow a training program targeting the development of his/her physical qualities which should be complementary to the practice of his/her sport. It is easy to recognize that a good physical fitness level will ensure greater resilience and longevity in sports. The same applies to musical performance. Musicians are high-performance athletes and should prepare themselves as such! Living and playing with pain is not inevitable, it is an option.

The prevalence of pain and injury in musicians

As the years go by and the hours playing their instrument accumulate, it is almost inevitable that professional musicians develop musculoskeletal and/or neuromuscular problems of varying severity at some point in their career. More so if they do nothing about their physical preparation. Review studies on the prevalence of injuries in professional musicians point out that 76% of musicians suffer or have suffered from physical problems that prevent them from performing at their usual level and 84% had injuries that interfered negatively with their musical practice1. Some musicians will develop tendinopathies and low back pain of varying intensity, which they will be able to manage with chronic intake of anti-inflammatory medications or simply by playing less frequently and/or just by enduring pain and discomfort. Others will develop more serious overuse injury syndromes that will become chronic and compromise not only quality of musical performance, but also quality of life, forcing them to periods of musical inactivity. Additionally, others will suffer from even more serious forms of injury that may result in abandoning their career as an instrumentalist musician.

In general, the most frequent injuries affecting musicians manifest themselves through pain and/or dysfunction, especially on the joints, tendons, ligaments and nerves of the upper limb, head, neck and spine. For example, in orchestral instrumentalists, injuries of musculoskeletal and/or neuromuscular origin are more common and affect about 64% musicians, of which 20% consist of peripheral nervous problems and about 8% of cases of focal dystonia2. It makes sense, considering that these are the most stressed areas of the body during instrumental practice. An exception would be the cases of focal dystonia, which, although it may be accompanied by pain and musculoskeletal injury, the root cause of the dysfunction observed at the peripheral level is actually central, that is, the dysfunctional neuronal circuits are at the upper levels of the central nervous system such as the cerebral cortex. Thus, the most frequent injuries in instrumentalist musicians can be summarized as follows3:

  • Musculoskeletal injuries – epicondylitis, tendinopathies (tendinosis, tendinitis, tenosynovitis), bursitis, arthritis, arthrosis, osteoarthritis, contractures, injuries to the temporomandibular joint;
  • Nerve trapping and inflammation – carpal tunnel syndrome, thoracic outlet syndrome, radial tunnel syndrome, ulnar nerve compression syndrome, ulnar tunnel syndrome, cervical and lumbar radiculopathies;
  • Hypermobility;
  • Focal dystonia;
  • Hearing loss.

The onset of injuries in musicians is due to an array of factors that naturally interact. Several authors have identified the following factors facilitating and/or causing the development of injuries in musicians1:

  • Physiological and biological factors such as gender and age. Women seem to be more likely to develop peripheral musculoskeletal and nerve injuries compared to men, and individuals who engage in high volume instrumental practice at an early age, at 4-5 years of age, are also more likely to develop injuries later in life4,5. In the case of focal dystonia, there is a clear higher prevalence in males (over 90%) and in women with menstrual disorders, which suggests that hormonal factors may be predisposing to the development of this disorder6.

 

  • Type of instrument. The characteristics of the instrument (size, shape and weight) and the time of practice imply different levels of physical demand, in which fatigue onset and an execution based on too much physical effort can lead to the development of injuries7. For example, the position needed to play the clarinet implies that the entire weight of the instrument is supported on the right thumb, and at the same time it requires a large amount of short and fast movements of the fingers of both hands8. Another example particularly special to me is the double bass. A bulky instrument with an air column of considerable inertia, which requires not only considerable grip strength to press on the strings, but also considerable whole body physical effort (which, can of course, be optimized with efficient technique) to move this column of air and make the instrument vibrate and produce sound. Anyone who has tried playing the double bass for a few minutes realizes the physical demands that playing this instrument encompasses.

 

  • Instrumental technique. A poor instrumental technique, with non-optimized positions, based on physical effort rather than on movement efficiency, associated with long hours of practice without rest, will naturally predispose the player to pain and injury, especially in the wrists, hands, neck and shoulders9 .

 

  • Specific technical demands. The technical demands of a particular musical piece that often requires high-speed and high-intensity execution, with fatiguing repetition of movements or maintenance of extreme hand positions for a long period of time. All of this creates high levels of mechanical stress and may cause injury10,11.

 

  • Body asymmetry. In the same way that an athlete of a one-side dominant sport will try to compensate for these asymmetries by working out both sides of the body, a musician is in a similar situation, because playing an instrument implies asymmetrical work in very unnatural positions for long periods of time, which will favor the occurrence of various muscular imbalances12.

 

  • Poor physical fitness. Good levels of strength and general physical conditioning are essential to maintain a good position to play an instrument for long periods of time. Most of these positions are very unnatural. Being in good physical fitness will allow to resist the onset of fatigue, recover more quickly between rehearsals or practice sessions, and in fact, it will allow to tolerate more hours of practice avoiding technique and performance deterioration7. Muscle imbalances and weakness resulting from long hours of sitting in certain positions and high volume repetition of short movements must be prevented through exercise programs aiming to strengthen the body globally, and at the same time to compensate for muscle imbalances induced by instrumental practice13.

 

  • Other lifestyle factors. We know that lifestyle factors such as smoking or smoke exposure, alcohol consumption, sleep deprivation, malnutrition, poor hydration and obesity have very damaging effects at a systemic level on our body. Regarding neuromuscular injuries, we know that all these forms of toxicity weaken the body’s connective tissue (cartilage, tendons, ligaments, membranes), muscles and nerve conduction, predisposing to the development of localized inflammatory processes as well as chronic injuries. For example, did you know that obesity is highly predisposing to development of carpal tunnel syndrome?14 Or that smoking is strongly associated with development of injuries and dysfunctions in the shoulder?15

Preventing and resolving injuries in musicians

Any elite athlete empirically knows something that has long been supported by science. That the most effective way to prevent (and also treat) overuse or overload injuries due to high volume sports practice is to ensure good levels of physical fitness combined with good recovery habits, adequate rest and nutrition. Regarding physical fitness, it is unthinkable for an elite athlete, not to follow a regular physical training program. An athlete knows that this will have negative consequences both on sports performance and on the susceptibility for developing injuries. The athlete knows that the weaker his/her musculoskeletal system is, the greater the vulnerability to injury. The question is, and if we consider that professional musicians are required to engage on activities requiring high physical and mental performance for long hours of daily practice, shouldn’t musicians treat themselves as high-performance athletes? I am certain that they should.

In fact, a 2019 systematic review investigating the topic of physical training for professional orchestra musicians1 indicates that following a structured physical training program of varying durations (from a few weeks to several months) has generally resulted in significant improvements in musical performance and in reducing (and even eliminating) chronic pain1.

To keep playing at the highest level for a long time, musicians would greatly benefit if they treated themselves as high-performance athletes and ensure that they maintain good physical shape combined with good habits of recovery, rest and nutrition. And to be clear, when I talk about staying in good physical shape, I don’t mean playing sports. In fact, playing sports as a mean to improve one’s physical fitness is not ideal and can even be harmful. More activity with asymmetric characteristics would be added on top of another, also asymmetric, which is playing a musical instrument. In general, all sports are constituted by specialized movements, and for that reason, also asymmetrical. So, except for purely recreational reasons (which can also be positive at a mental and stress release level), the practice of a sport as a strategy to improve physical fitness is not ideal and should not be the first choice particularly by musicians (I discuss this very topic in this article: Why musicians should not play sports).

General physical fitness is improved through the process of training our physical qualities. This should entail an assessment of the initial status in order to identify specific limitations and outline a specific intervention strategy. One should always start at the base and progress from there, just like the process of learning to play a musical instrument. Here, attention to detail is key. A well-designed training program implies the management of training variables specific to the profile and objectives of the athlete or, in this case, the musician. A correct selection of exercises is crucial, as well as close monitoring of their implementation regarding form of execution, training load and progression over time. As I mentioned, it is not very different from the process of learning to play a musical instrument!

For a musician, playing the instrument is the top priority. It can be obsessive, I know. But playing better in the long run does not necessarily mean playing more hours, but rather investing in taking care of the ‘’machine’’ that is our body. I reiterate once more that playing with pain or discomfort is an option and not an inevitability. Take care of your body and treat it well, because you will need it in the long run!

Train well to play well!

Nuno Correia

References:

  1. Gallego, C., Ros, C., Ruíz, L., Martín, J. (2019). The physical training for musicians. Systematic review. Sportis Sci J, 5 (3), 532-561.
  2. Lederman, R. J. (2003). Neuromuscular and musculoskeletal problems in instrumental musicians. Muscle & Nerve, 27(5), 549–561.
  3. Betancor Almeida, I. (2011). Hábitos de actividad física en músicos de orquestas sinfónicas profesionales: un análisis empírico de ámbito internaciona Tesis Doctoral. Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria.
  4. Fishbein, M., Middlestadt, S., Ottati, V., Straus, S., y Ellis, A. (1988). Medical problems among ICSOM musicians: Overview of a national survey. Medical Problems of Performing Artists, 3(1), 1–8.
  5. Viaño, J. J. (2004). Estudio de la relación entre la apariciación de lesiones musculoesqueléticas en músicos instrumentistas y hábitos de actividad física y vida diaria. En III Congreso De La Asociación Española de Ciencias Del Deporte. Valencia: Universidad de A Coruña.
  6. Rosset-Llobet, J., Candia, V., Fàbregas, S., Ray, W., & Pascual-Leone, A. (2007). Secondary motor disturbances in 101 patients with musician’s dystonia. Journal of neurology, neurosurgery, and psychiatry, 78(9), 949–953.
  7. Sardá, E. (2003). En forma: ejercicios para músicos. Barcelona: Paidos.
  8. Thrasher, M., y Chesky, K. (1998). Medical problems of clarinetists: Results from the U.N.T. musician health survey. The Clarinet, 25(4), 24–27.
  9. Wynn, C. B. (2004). Managing the physical demands of musical performance. En Williamon A. (Ed.), Musical excellence: Strategies and techniques to enhance performance (pp. 41–60). Londres: Oxford University Press.
  10. Bejjani, F. J., Kaye, G. M., y Benham, M. (1996). Musculoskeletal and neuromuscular conditions of instrumental musicians. Archives of Physical Medicine and Rehabilitation, 77(4), 406–413.
  11. Mark, T., Gary, R., y Miles, T. (2003). What every pianist needs to know about the body: a manual for players of keyboard instruments: piano, organ, digital keyboard, harpsichord, clavichord. GIA Publications. Martín.
  12. Ackermann, B., Adams, R., y Marshall, E. (2002). Strength of endurance training for undergraduate music majors at a university? Medical Problems of Performing Artists, 17(1), 33– 41.
  13. Frabretti, C., y Gomide, M. F. (2010). A saúde dos músicos: dor na prática profissional de músicos de orquestra no ABCD paulista. Revista Brasileira de Saúde Ocupacional, 35(121), 33– 40.
  14. Shiri R, Pourmemari MH, Falah-Hassani K, Viikari-Juntura E. The effect of excess body mass on the risk of carpal tunnel syndrome: a meta-analysis of 58 studies. Obes Rev. 2015;16(12):1094-1104.
  15. Bishop, Julie Y. et al. (2015). Smoking Predisposes to Rotator Cuff Pathology and Shoulder Dysfunction: A Systematic Review. Arthroscopy, Volume 31, Issue 8, 1598 – 1605.

 

Given the times we live in, where social contact is limited, the promotion of online services in all professional areas proliferates. In fitness, it seems that it has suddenly been discovered that you can (and should) train every day and that you can train at home and/or on your own. It is incredible the explosion of posts on social media by personal trainers offering sequences of exercises for people to perform at home. We know that, for better health and resilience, it is essential to exercise every day, just as it is essential to eat well and maintain personal hygiene, but this has always been so and, therefore, it is not only a necessity of current times.

For this reason, posting an exercise line-up for everyone to perform is as valuable as posting a photo of a meal or of someone brushing their teeth. It serves as much to remind you that these activities are important, but the content is not, to a large extent, applicable to you reading this text. Much less when it comes to exercise. In fact, picking up the fork and knife to eat, or the act of brushing your teeth are less complex activities than performing most of the physical exercises that we often see proposed, let alone organizing them in a training session.

The health and resilience resulting from training is even more relevant in times of crisis such as the one we are experiencing now, but that health and resilience was mainly built months and years prior to this moment. Notably during those months and years that you consistently went to the gym to do your workout, often with personal sacrifice. It is hard to organize oneself in order to be able to train! We have family and work and it is sometimes difficult to reconcile all social and professional obligations with the time we choose to invest in our health and well-being, like in the case of training. Notice that now I’m using the term training.

Because many of you who are reading these lines have long understood the difference between “exercising” and training. Many of you have realized that “exercising” is better than nothing, but that training is at a higher level. Training is a process that requires the organization and management of a range of variables over time. It requires making a careful assessment of the initial condition, selecting specific exercises and the ways to perform them, observing and evaluating movement, and making the necessary adjustments (e.g. load, type and form of exercise execution) in order to ensure constant progression along the path towards health, performance and resilience. Training is not the same as ‘’doing exercises” always varied and without criteria just to maintain some physical activity. And because some of you understand this difference, you have come over the months and years that preceded today’s turbulent times to make organizational sacrifices in order to train. And you chose to invest a little more of your time and money, and regularly went to a gym to get a training service. A service in which a program is followed, the exercises are not chosen at random, and in which the progression in the loads used as well as the execution of the exercises is closely monitored by a coach.

All the benefits of personalized training are possible to obtain remotely via online. I believe that the in-person format will always be superior, but with good organization and commitment from both the coach and student, constant progression is possible, and this difference can be mitigated. How do we know this at The Strength Clinic? Because we’ve been doing it for years! In addition, personalized training followed online may even have some advantages over the face-to-face format, such as:

  • Not having to go to the gym at any given time. This can be a great advantage for some people. If the self-discipline of following your training program is guaranteed, travel time and what it implies in organizational terms is saved. In addition, you can choose a training time slot that best fits your schedule without being conditioned by the availability of your coach;
  • Greater consistency and commitment doing the exercises in your program. Since you can choose the time slot of your training session, you are less likely to miss it, as you will have more flexibility in adjusting the schedule if needed. This way, it is more likely that you reach the weekly training frequency that is desirable. In addition, as we recommend that you document on video a summary of each workout on an online platform so that your coach can observe, this also adds an additional sense of commitment to the session and the proper execution of the exercises;
  • Better cost benefit. In fact, you will be able to enjoy almost all the benefits of having a personal trainer for a lower price because you will not have to pay for the running costs of the facility and its equipment usage where the in-person training session would take place;
  • Train directly with your favorite coach. If the coach you would like to work with is not available in-person or his/her in-person rate is beyond your means, the online option will allow you to work directly with him for a lower price.

The message “don’t stop training even if you are at home or on your own” in the context of the crisis we are experiencing today is correct! However, this need did not arise today. It is something that should be part of our lives if we want to remain getting stronger and healthier forever. For this purpose, training is much better than just “exercising”, especially if you follow workouts taken from social media that do not take into account your specific profile, your body awareness and do not follow any criteria for exercise selection and future programming. It only serves the purpose of “moving the body” and getting tired in that moment or day, but it will not accomplish much more than that. Because training implies a process that is based on your goals and individual characteristics. In a training session, what you do today was based on what you did yesterday and what you are going to do in the future. And it is possible to continue to train online and reap all the benefits of personalized training, even at a distance. It requires a mutual commitment of the student and coach in a process that is joint. Your optimized personal development will always be our commitment at The Strength Clinic. We are here to guide you through this process rather that offering “one size fits all” workouts for everyone!

Stay strong!

Nuno Correia

 

The International Society of Sports Nutrition published in 2017 a position stand (see reference below) on the safety and efficacy of creatine supplementation in the context of exercise, sports and medicine.

Creatine supplementation, one of the most popular and studied nutritional supplements, has in fact been shown to be effective in improving athletic performance (especially in high intensity exercise) and inducing relevant training adaptations. The consequent increase in intramuscular creatine (and phosphocreatine) reserves facilitates the rapid re-synthesis of ATP, the so-called energy “currency” of the body, which is essential for almost every reaction in our body. Thus, the increased availability of creatine in the cell through supplementation contributes to improve performance because it increases the energy availability in order to exercise (i.e. muscle contraction) as well as a whole range of other muscle cell related reactions. Creatine supplementation can in fact enhance strength production, muscle work, accelerate recovery and help preventing injury.

Additionally, creatine supplementation appears to be highly safe and effective not only in athletes but also in non-athletes (such as the so-called exercise enthusiasts), as well as in various clinical populations. In fact, several studies (see ISSN article, reference below) point to benefits of creatine supplementation in various populations and clinical settings, such as:

– Accelerating injury rehabilitation (because it attenuates muscle atrophy);

– Protection of neuronal injuries (spinal and cerebral);

– Mitigation of debilitating consequences in people with congenital syndromes of creatine synthesis deficiency;

– Attenuating the progression of neurodegenerative diseases (e.g. Huntington’s disease, disease, Parkinson’s disease, mitochondrial diseases, amyotrophic lateral sclerosis);

– Prevention and / or improvement of bioenergetics in patients with myocardial ischemia or stroke victims;

– Improving metabolic and functional indicators associated with aging;

– Possible benefit during pregnancy for optimal growth, development and health of the fetus.

In conclusion, creatine does indeed appear to be a safe and beneficial nutritional supplement for a wide range of populations and ages. Indeed, this is a supplement that actually works!

Take creatine and power to you!

Nuno Correia

References:

Kreider, R.B. et al., 2017. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1), p.18. Available at: http://jissn.biomedcentral.com/articles/10.1186/s12970-017-0173-z.

 

“Do not judge a man’s strength by the size of his biceps. Things do not always look what they seem.”

– Pavel Tsatsouline

In my opinion a normal human being should aim to be strong. And when I say strong, I’m not talking about those bulked individuals with a strange gait. Anyone (of any age) can become stronger by working consistently for this. Unfortunately, most people are more WILLING to be strong than doing what they need TO DO to be strong. Yes, these are different things. And yes, it’s not easy. One thing is WANTING a top-of-the-range Porsche, another thing is DOING the things needed to have a top-of-the-range Porsche. With strength is the same situation. To be strong, you need to have a plan (or have someone design a plan for you) and to work consistently to execute that plan – this is what your objective should be: to execute the plan. That’s it. You do not become what you THINK about every day, you become what you DO every day. Yes, there are no miracles, no one gets stronger without effort and without spending the time necessary for that to happen. The fitness magazines and the marketing associated with this industry want to make you believe that it’s possible to get stronger or leaner without great effort and quickly. It’s because of these kinds of messages that people still believe in shortcuts and / or allude to the power of genetics. They want it all but they don’t do anything (nothing useful at least). And then they still blame genetics!

There is one thing you should be aware of right now, strength is a skill. And in this sense, strength is the ability to generate more tension in muscles. And that is why strength is the basis for the development of speed, endurance and even flexibility. Like all skills, there are techniques or more appropriate ways to develop it. And that’s what I’m going to share with you. I will teach you some techniques for you to get stronger faster but this will only work if you apply them consistently in training. So, do them! Some of these techniques have already been used with me and with my clients / athletes, so I can assure you that they work and that they are scientifically proven, if that interests you as well. And before explaining them, I want to refer to Pavel Tsatsouline (I love reading his books), since he has been one of the individuals who has shared most of the “Russian secrets” of strength and one of the persons who have inspired me most in this journey. I hope I can meet him someday. Ready? Let’s do it!

  1. Irradiation

This one is easy, this one any five-year-old understands.

First make a bicep curl set of 5-6 repetitions with good form, keeping the elbow close to the body and without tilting the trunk back. You can use a dumbbell or a barbell. But a serious dumbbell, it’s not worth using Barbie and Ken-style dumbbells, let these tools for people to have fun in aerobic classes! After doing this set, rest for a few minutes and make the following changes: before doing the movement again, i) squeeze hard the dumbbell or barbell; (ii) squeeze your glutes as if you wanted to crack a nut with your buttocks and (iii) tighten your abs and imagine that Mike Tyson will punch you in the stomach.

If you can do these three things, you will realize that the weight will get lighter and you will be able to do a few more reps – in a better and safer way. The explanation is this: when you create tension at various points in the body this will increase total body stability (via the neural impulses produced by the contracting muscles) and this stability / force will irradiate (i.e. spread) to the neighboring muscles as if it were an electric current to start the engine. And the most interesting part lies on the fact that the strength of a particular muscle, for example the bicep, can be amplified if the neighboring muscles also help! Have you realized why in the union lies strength? The formula is simple: more tension = more stability = more force.

  1. Bracing

Who still does arm wrestling in school? I perfectly remember the times when I was in school and this was one of the games we did in during class breaks or when we had a hole in our schedule. I remember very well the agonizing look of my classmates when they were about to be defeated or their expression of jubilation when I let them gain advantage and then finished strong. Yes, this was fun at the time! And yes, most of the time I won ?.

I gave the example of arm wrestling because I think this is the best way to understand this phenomenon. Lets’ see: an individual who can generate more tension before squeezing his opponent’s hand will have a superior neuromuscular activation level and a clear advantage over an individual who only begins to squeeze when someone (the referee) gives the signal to begin the “combat”. According to Prof. Yuri Verkhoshansky, if we create a sort of pre-tension in the muscles before starting a dynamic contraction, this can lead to increases of up to 20% in performance! Now imagine the advantage you can have if you can apply this technique and if your opponent does not know about it.

Try this technique as follows. Do five normal push-ups and relax on the floor between reps. Then do another five and this time think about creating tension in the whole body, that is, think of squeezing your glutes and abs before pushing against the floor to come up. If you do this well, you will realize that you are much stronger than you thought. Therefore, the key to this technique is in creating tension in the whole body before counteracting resistance. If you do not create this tension before, you will remain weak. Do not be that person.

  1. Power Breathing

First, a few notes on breathing. Proper breathing is very important to maximize performance, a normal person breathes on average more than eight million times a year and it is more likely that he will not do it efficiently. If there was a movement pattern that you had to repeat 23,000 times a day, would you not make an effort to improve it? Think about this a little bit. Most people only use a small percentage of the body’s ability to extract oxygen from the air into the lungs because they tend to breathe only with the upper body (apical breathing), instead of breathing deeper by using the most efficient respiratory muscle we have, the diaphragm (I think we do not talk much about the diaphragm in fitness / bodybuilding magazines because this is an invisible muscle that will not really impress women). But the fact is that this daytime breathing will affect several things: your recovery ability, your anatomical structure, the functioning of your autonomic nervous system, and your cognitive ability. So, if we are talking about performance optimization, be sure to improve your breathing patterns as well.

Second, regarding power breathing, this technique consists of holding the breath during the various phases of lifting. For example, the legendary Bruce Lee used to say that in the martial arts the power of breathing was more important than body strength. In general, the effect of breathing patterns and intra-abdominal and intra-thoracic pressure on strength is strangely ignored or misunderstood by fitness professionals and some medical authorities. These authorities seem to forget that orthopedic injury is much more common than cerebrovascular injury. That traditionally taught breathing pattern of inhaling when we lower the weight (eccentric phase) and exhaling when we raise the weight (concentric phase) may be useful in some cases (and we can’t say that’s wrong) but it’s not the one you want to do when you want to generate as much tension / strength as possible in the muscles. Why? Because the increase in intra-abdominal and intra-thoracic pressure will boost muscle excitability (through the pneumo-muscular reflex) and it is this process that will guarantee more stability in the spine and that will amplify your strength. This is the most natural way to produce strength! Yes, your fitness instructor may have said that forced exhalation of air against the glottis (i.e. the Valsalva maneuver) is hazardous to your health and that you may have a stroke doing this. But is this assertion correct? Prof. Yuri Verkhoshansky and Dr. Mel Siff, two of the world leading authorities on strength training, say the following in this regard in the book Supertraining, one of the strength training bibles:

“For example, the Valsalva maneuver associated with holding breath has a vital role in increasing intra-abdominal pressure to support and stabilize the lumbar spine during heavy lifting… It has been corroborated on many occasions that stress on the spine is decreased during any movement against high resistance and that exhalation during lifting increases the risk of injury to the lumbar spine. Thus, it is unwise to follow popular medical advice that people must exhale during the effort”. The authors further add: “while this may be appropriate for patients with heart disease or hypertension, this same action performed by an athlete who is doing squats or heavy lifting overhead, can seriously compromise spine stability and safety”.

Got it? This means that any healthy person can and should apply this technique if they aim to get stronger and lift heavy loads in a safe way. People with hypertension and heart disease should be more cautious in this regard but please note: this is not to say that they can’t strength train, there are many other ways to develop strength. By the way, it is already well documented in the scientific literature that these people can and should do strength training to improve their condition!

  1. Successive Induction

Successive Induction, such as the Law of Irradiation we have seen above, is another of the Sherrington Laws exploited to the maximum by the Russians. According to this law, contraction of a muscle – for example, the triceps – will make your muscle antagonist – in this case, the biceps – stronger than normal. In the early 1980s scientists suggested that this technique had a disinhibiting effect and later confirmed that a strength training program that included pre-tensioning an antagonist muscle (i.e. successive induction) was more effective than a program of conventional training. And the most interesting thing is that these benefits were not only limited to an acute performance increase, but also resulted in long lasting strength improvements.

Do the following test. Grab a barbell or free weight and get ready to make a bicep curl set with a load that allows you to do 5-6 solid repetitions. Remember, hold your elbows close to your body and do not lean your trunk back. Do one set and count the number of repetitions you can do with good form. After resting for a few minutes, keep the same weight and do another set, but this time using this new technique. When you bring the weight up, apply the other techniques you already know (irradiation and bracing) and on the descent apply the technique of successive induction, “pulling” the weight down with the triceps. In this way, you will give the biceps some rest on the descent (by preventing them from locking the movement) and will allow the triceps to also have a more active participation in the movement. You should expect to be able to do one or two more reps this way!

Therefore, when applying this technique, you will have two engines controlling the movement. And because of the co-contraction of both muscle groups, this technique may also offer greater benefits in terms of joint stability since the stress on them will be reduced (note: do not forget to discuss this with your doctor if you have joint problems).

Finally, my advice to you is this: if you want to start lifting heavy loads safely begin applying these principles in training (if you can’t do this alone ask someone you know to help you) and enjoy learning one of the skills (i.e. strength) you will need most to optimize your health. And be patient, do not expect to learn all these things from one day to another – it takes time and practice, good practice of course.

See you soon!

Pedro Correia

References

Tsatsouline, P. (1999). Russian Strength Training Secrets for Every American. Dragon Door Publications.

Tsatsouline, P. (2003). The Naked Warrior. Master Secrets of the Super Strong – Using Bodyweight Exercises Only. Dragon Door Publications.

Verkhoshansky, Y; Siff, M.; (2009). Supertraining. Sixth Edition – Expanded Version. Ultimate Athlete Concepts.

Verstegen, M.; Williams, P. (2014). Every Day is Game Day. Penguin Group.

 

Whatever the sport, strength training, in harmony with various training factors (i.e., technical, tactical, physical and psychological) and training principles (i.e., overload, specificity, reversibility, heterochronism, specialization, continuity, progression, cyclicity, individualization and multilateralism) will endow the athlete with a complete set of tools in order to maximize performance.

In tennis, strength is used to generate speed, power and endurance. It is impossible to have agility, speed, power, a developed anaerobic system, and flexibility / mobility without optimal strength levels (Verstegen, 2003). Strength training is also critical to prevent injury. Because tennis is a sport that involves many repetitions of movements of unilateral features, it is conducive to developing muscular imbalances which significantly increase the likelihood of injury. In tennis, the highest incidence of injuries is in the shoulders and back, followed by injuries in the elbows, knees and ankles (Kibler & Chandler, 1994). Thus, specific strength training for tennis is essential to maintain or restore proper muscle balance.

Definition of Force

The definition of force based on its purely mechanical concept consists of any cause capable of modifying the state of rest or motion of a body, consisting of a vector with a given magnitude and direction. It is the product of mass by acceleration (F=m*a). Although this definition of force is unanimously accepted, it hardly illustrates the different components of muscle strength. That is, if we understand muscle strength as an essential component for the development of motor skills which consists of the ability to apply force to overcome resistance (O’Sullivan & Schmitz, 1998).

Why Strength Training in Tennis?

A strength training program in the context of tennis should aim at developing “highly innervated muscles with an explosive ability” so that players can serve with greater speed, so that they can put “more weight” on the ball (due to an improved use of ground reaction forces), so that they can cover more area on court (because they are more agile and fast), and so that they feel as if they “float” on the court the whole day and week (Verstegen, 2003). It is important though to dispel some myths regarding strength training, namely that this type of training will make players slower, less agile or tight. Only poorly designed strength training programs will lead to this. In fact, several studies show that amongst Olympic athletes, weightlifters are those displaying the highest levels of power and are second best (after gymnasts) regarding flexibility levels (Jensen & Fisher, 1979).

It has been well established that adequate strength training not only maintains levels of flexibility but can actually significantly increase them (Fox, 1984; Jensen & Fisher, 1979; O’Shea, 1976; Rash, 1979). Also, adequate strength training induces significant improvements in: work capacity; body composition (i.e., lean mass gains and loss of fat mass); energy efficiency; tissue growth hormonal secretion profile favoring protein synthesis (e.g. strength training induces growth hormone secretion and testosterone); posture; and muscle balance (Lamb, 1984; Stone et al., 1982).

Specifically in tennis, it has been shown that strength training strengthens the immune system (thus protecting the player from injury and illness), and is often pointed to have a positive psychological effect on players, since it appears to be coupled with an increase in levels of self-confidence during matches (Folkins & Sime, 1981; Tucker, 1983), as out of the game (Folkins & Sime, 1981).

The Various Types of Strength and Its Application in Tennis

  • Strength endurance: the ability to produce force over time while resisting to fatigue. Good strength endurance levels allow the maintenance of proper form and a correct technical execution. Together with the static strength, strength endurance makes a sort of a basis for developing other types of strength training in tennis.
  • Static strength: the ability to stabilize joint structures allowing better transmission of energy along the kinetic chain, i.e. without loss of energy. In tennis, this type of strength allows optimal use of force generated against the ground to subsequently transfer speed to the ball.
  • Maximal strength: relates to the maximal force value during a voluntary contraction against an immovable resistance. It is mainly a strength assessment parameter and we can consider its absolute and relative measures (i.e. relative to body weight). For tennis, relative strength is more relevant than absolute strength because it has a direct influence on the player’s speed and agility. Strength Deficit (SD) should also be evaluated based on measures for Maximum Eccentric Force (MEF) and Maximum Isometric Force (MIF). The SD = MEF-MIF. If the SD > 25% for the lower limbs, and SD > 50% for the upper limbs, training should prioritize Rate of Force Development (RFD). If below these values, strength training should focus on hypertrophic and maximal strength methods.
  • Power – the ability to produce the most amount of force in the shortest time interval. It includes:
  • Starting strength (up to 250ms of the force / time curve) –expressed as the Initial Force Production Rate (IFPR) and reveals the ability to accelerate from a static position (i.e., velocity = 0);
  • Explosive force (above 250 ms of the force / time curve) – expressed as the Maximum Force Production Rate (MFPR) and reveals the ability to accelerate to maximum force levels. It is one of the main indicators of performance in tennis. It corresponds to the phase of maximum acceleration during a given movement;
  • Reactive force – force produced during muscle’s stretch-shortening cycle (SSC). The use of the elastic and reflex properties of the muscle present in the SSC influences the IFPR and the MFPR. Reactive force training (i.e., using muscle’s SSC) may contribute to increased acceleration capacity, that is, increasing IFPR and the MFPR, and consequently gains in power.
  • Optimal Strength (Verstegen, 2003): the combination of the types of strength described above according to aspects inherent to the player and his/her performance, such as: age; capacities; style of playing; stage of development; type of surface on which they will play.

Table 1 specifies the ideal characteristics of strength training in tennis for the various stages of development according to the Long-term Athletic Development model (Balyi & Hamilton, 1999).

Table 1.
AgeCharacteristics
6-9 Boys

6-8 Girls

Strength training should focus on exercises with body weight. It may include the use of medicinal balls (of adequate weight) in exercises of a playful nature. The strength gains at this age are mainly attributed to gains in motor coordination and neuromuscular activation.
9-12 Boys

8-11 Girls

Strength training should be regular and lead to progressive improvements. At this stage, however, emphasis should be placed on motor learning and development.
 

 

12-16 Boys

11-15 Girls

Strength training should be characterized by short sessions (less than 30 minutes) two to three times a week. The Peak Height Velocity (PHV) will determine the increase in volume and intensity of the loads. Critical periods for strength training will occur shortly after PHV for girls, and 12-18 months after PVA for boys. Basic Olympic lifts techniques should be introduced and mastered during the PHV. This can constitute an important training tool “in the box” for later development high levels of power, as well as preventing injuries and optimize adaptation to strength training.
 

16-18 Boys

15-17 Girls

Strength training should be regular and lead to progressive improvements. Regular assessment of strength deficit should be made to determine if training should be more hypertrophy or RFD oriented. It should have a special emphasis on possible muscular imbalances due to the higher levels of intensity and volume related to tennis training and tournaments
 

Adulthood

The training should be regular and lead to progressive improvements. However, training should spot imbalances, inadequacies and weak points of the athletes in order to optimize performance in tennis in the long term.

 

Conclusion

In short, a strength training program should consist of integration of stability and recovery / corrective exercises, together with strength work of both maximal and explosive  characteristics, as well as court work focusing strength components such as speed, agility and power.

References

Balyi, I. & Hamilton, A. (1999). The FUNdamentals in Long-term Preparation of Tennis Players. In N. Bollettieri (Ed.). Nick Bolletieri Classic Tennis Handbook, (pp. 258-280). New York: Tennis Week.

Folkins, C. H. & Sime, M. E. (1981). Physical training and mental helath. Journal of Physiology, 36, 373-389.

Fox, E.L. (1984). Sports Physiology (2nd edition). Philadelphia: W.B. Saunders.

Jensen, C. R. & Fisher, A. G. (1979). Scientific Basis of Athletic Conditioning. Philadelphia: Lea & Fegiber.

Kibler, W. B. & Chandler, T. J. (1994). Raquet Sports. In F.Fu &D. Stone (Eds.), Sports injuries: Mecahnisms, Prevention, and Treatment. Baltimore: Williams & Williams.

Lamb, D. R. (1984). Physiology of Exercise (2nd edition). New York: MacMilan.

O’Shea, J. P. (1976). Scientific principles and Methods of Strength Fitness (2nd edition). Reading: Addison.Wesley.

O’Sullivan, S. B. & Schmitz, T.J. (1998). Strategies to improve motor control and motor learning. Physical Reabilitation: Assessment and Treatement (3rd edition) (pp.225-244). Philadelphia: F.A. davis.

Rasch, P. J. (1979). Weight Training (3rd edition). Duduque: Wm. C. Brown.

Stone, M. H., Byrd, R., Carter, D. et al. (1982). Physiological effects of short-term resistive training on middle-age sedentary men. National Strength and Conditioning Association Journal, 4, 5, 16-20.

Tucker, L. A. (1983). Self Concept: Afunction of self-perceived somatotype. Journal of Psycology, 113, 123-133.

Verstegen, M. (2003). ITF Strength & Conditioning for Tennis. In M.  Reid, A. Quinn, & M. Crespo (Eds), Developing strength (pp. 113-135). London: ITF Ltd.