PODERÁ A RESTRIÇÃO CALÓRICA OU O JEJUM INTERMITENTE CONTRIBUIR PARA EVITAR “DOENÇAS DA IDADE” E VIVER MAIS TEMPO? – PARTE 1

 

Introdução

Neste artigo debruçar-me-ei sobre a possibilidade da restrição calórica ou jejum intermitente constituírem estratégias terapêuticas nutricionais eficazes para prevenir, amenizar ou mesmo eliminar algumas “doenças ditas da idade” e dessa forma contribuir para viver melhor e mais tempo. É importante referir que a maior parte dos estudos sobre os efeitos de restrição calórica ou jejum intermitente (ou restrição calórica intermitente) na esperança de vida são de carácter mecanicista e conduzidos em modelos animais e/ou in-vitro. É compreensível a existência duma menor abundância de estudos de intervenção em humanos nesta área. Se pensarmos um pouco, não é fácil conduzir estudos em humanos sujeitos a restrição calórica para estudar os seus efeitos na esperança de vida e na incidência de “doenças da idade”. Não só não será fácil recrutar pessoas para voluntariamente incorrerem num período de restrição calórica, tal como não é prático estudar em humanos (de forma randomizada e controlada) os efeitos da restrição calórica ou jejum na esperança de vida, porque simplesmente estes “vivem muito tempo”. Por forma a obter resultados em tempo útil torna-se essencial conduzir estudos em espécies com esperança de vida mais curta. Contudo, estudos observacionais e alguns estudos de intervenção em humanos (discutidos mais à frente) parecem confirmar os mesmos efeitos benéficos para a saúde e pelos mesmos mecanismos moleculares daqueles observados em animais.

De referir ainda que, no contexto experimental, restrição calórica é definida como “redução da ingestão de alimento sem subnutrição”. Ou seja, normalmente intervenções nutricionais que implicam uma redução de 10-40% das necessidades calóricas diárias em que apenas as calorias e não os nutrientes são restringidos (na maior parte dos estudos controlados este aspecto é assegurado com suplementação de vitaminas e minerais) (Kitada & Koya, 2013b; Robertson & Mitchell, 2013). Esta noção é importante! Défice calórico não implica défice de nutrientes e excesso calórico não implica que as necessidades de nutrientes estão colmatadas. Jejum intermitente não será mais do que um método alternativo de restrição calórica em que a ingestão de comida é restringida durante um determinado período de tempo (normalmente entre 16 a 24 horas) seguido de um período de ingestão sem restrição, e que tem sido apontado como produzindo efeitos benéficos na saúde similares a protocolos de restrição calórica mais constante (Martin, Mattson, & Maudsley, 2006; Robertson & Mitchell 2013).

Parte 1

Deveremos aceitar ser “doentes” só porque envelhecemos?

É recorrente ouvir-se dizer que a doença é algo que “vem com o pacote da idade”. De facto envelhecer é uma chatice! A percepção geral de um declínio progressivo de todas as nossas funcionalidades à medida que envelhecemos não é, infelizmente, uma ilusão. Existem várias teorias sobre o envelhecimento. Embora seja um tema certamente muito interessante, uma descrição detalhada das várias teorias do envelhecimento não é o objectivo deste artigo. Duma forma geral, são apontados como principais os seguintes mecanismos subjacentes ao processo de envelhecimento:

  • A teoria da Metilação do DNA, redução do comprimento dos Telómeros e o “limite de Hayflick”. O “limite de Hayflick” (fenómeno descoberto por Leonard Hayflick) determina que as células humanas têm um número limite de replicação, depois do qual elas tornam-se senescentes. Os telómeros (i.e. uma espécie de “capacetes” protectores no final de cada cromossoma) tornam-se progressivamente mais curtos a cada divisão celular (Shay & Wright 2000). Ora, a metilação do DNA (um processo essencial e reparador que consiste na adição de grupos de metil ao DNA e que pode ser promovida pela abundância de doadores de metil provenientes da dieta por exemplo) é apontada como sendo protectora do comprimento dos telómeros e dessa forma adiar a morte celular e o envelhecimento. Por exemplo, em modelos animais, a hipometilação da enzima telomerase reverse trancriptase conduziu à preservação do comprimento dos telómeros dos leucócitos (Zhang et al. 2003; 2014). Neste exemplo, é plausível inferir que adiar a senescência dos leucócitos (através de metilação e consequente conservação do comprimento dos telómeros) pode contribuir para uma maior robustez do sistema imunitário e dessa forma influenciar positivamente a longevidade.
  • A teoria do envelhecimento associada à Inflamação crónica. Esta teoria sugere que inflamação crónica não resolvida induz o organismo humano a não alocar recursos para o funcionamento de outras funções normais (pois estão permanentemente alocados para a inflamação que não se resolve) e dessa forma conduz a um envelhecimento precoce de vários orgãos e tecidos, e a instalação precoce de “doenças da idade”.
  • A teoria do stress oxidativo e dos radicais livres. Esta teoria, originalmente proposta pelo Dr. Denham Harman em 1956, é baseada na premissa de que o processo de envelhecimento é mediado por danos causados por radicais livres. Teoricamente, reduzindo a acumulação de radicais livres (e.g. espécies reactivas de oxigénio) e ao mesmo tempo aumentando a capacidade antioxidante do organismo (aumentando glutationa e enzimas antioxidantes como superóxido dismutase e catalase), poder-se-á prevenir danos aos tecidos (desacelerando o processo de envelhecimento) e prevenir a ocorrência de “doenças da idade”, e consequentemente contribuir para aumentar a longevidade funcional (Harman, 1988; 2006).

Muito bem, envelhecer é inevitável! Já sabemos disso. Contudo, se pensarmos um pouco, todos os mecanismos apontados têm uma raíz ambiental, ou seja, podemos até certo ponto controlá-los através de decisões que tomamos todos os dias. Nomeadamente decisões sobre o que comemos e como nos mexemos. E isto são boas notícias! Está de facto nas nossas mãos desacelerar o processo de senescência e prevenir a instalação das chamadas “doenças da idade”. Note-se que se para nós (mundo ocidental) é estatisticamente “normal” envelhecer com diabetes, hipertensão, cancro, demência, sarcopenia, osteoporose, doenças cardiovasculares, resistência à insulina, obesidade e inflamação crónica (porque a população estudada tem um estilo de vida que conduz à doença), noutras populações contemporâneas (não ocidentalizadas) essas doenças são raras ou mesmo inexistentes. Neste âmbito, convido o leitor a consultar aquele que considero um dos melhores livros que conheço sobre nutrição e estilo de vida, e a sua relação com a incidência das chamadas doenças “ocidentais”, Food and Western Disease: Health and Nutrition from an Evolutionary Perspective de Staffan Lindeberg. De facto, se queremos apontar para o nosso máximo potencial de saúde e de vida, não devemos olhar apenas para o que é “normal” numa determinada população, porque essa pode ser uma população doente. Devemos sim procurar o que é “biologicamente normal” para um ser humano! Uma espécie que está desenhada (em termos evolutivos) para lidar com uma série de estímulos ambientais que incluem certos níveis de actividade física, nutrição, exposição solar e sono. E se por um lado envelhecer é normal, não parece ser “biologicamente normal” envelhecer com as doenças crónicas.

Neste contexto, é igualmente frequentemente citado o Okinawa Centenarian Study. A população de Okinawa apresenta o maior rácio de centenários (saudáveis) do planeta (50/100.000 vs 10-20/100.000 nos USA) e como tal do maior interesse para estudar os factores que potenciam essa longevidade. Um dos factores identificados (para além dum nível apreciável de actividade física e interação social) foi o facto das populações acima dos 70 anos ingerirem cerca de 11% de calorias abaixo (aproximadamente 1785kcal/dia o que constitui uma restrição calórica muito moderada) do que seria recomendado para manutenção do seu peso corporal (de acordo com a equação Harris-Benedict), contudo numa dieta rica em nutrientes (Wilcox et al., 2006).

15978601_1499898363357125_841027663_n * Os habitantes de Okinawa deverão ter o rácio mais elevado de centenários em todo o mundo com 50/100.000. 

O que podemos fazer para viver mais tempo e melhor é a minha principal motivação intrínseca. Como referi, as nossas escolhas em relação ao tipo de exercício físico, alimentos que ingerimos e outros factores relacionados com o estilo de vida podem condicionar quanto tempo vivemos e (porventura mais importante) quão saudáveis e funcionais vivemos. Na segunda parte deste artigo, abordarei alguns mecanismos pelos quais as intervenções nutricionais como a restrição calórica ou o jejum intermitente podem conduzir a benefícios para a saúde. E na terceira parte, abordarei possíveis implicações e aplicações práticas da prática de restrição calórica ou jejum, bem como quais as populações que podem beneficiar mais dessas estratégias nutricionais e as que as devem evitar.

Fiquem por aí!

Nuno Correia

Bibliografia e Referências

Dröge W., 2009. Avoiding the First Cause of Death. New York, Bloomington. iUniverse, Inc.

Harman D., 1988. Free radicals in aging. Mol Cell Biochem. Dec; 84(2), pp.155-161.

Harman D., 2006. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. May;1067, pp.10-21.

Kitada, M. & Koya, D., 2013b. SIRT1 in Type 2 Diabetes: Mechanisms and Therapeutic Potential. Diabetes & metabolism journal, 37(5), pp.315–25.

Lindeberg, S., 2010. Food and Western Disease: Health and Nutrition from an Evolutionary Perspective. Oxford, United Kingdom: Wiley-Blackwell.

Martin, B., Mattson, M.P. & Maudsley, S., 2006. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing research reviews, 5(3), pp.332–53.

Masoro.E. L., 2002. Caloric Restriction: A Key to Understanding and Modulating Aging. Texas, USA: ELSEVIER.

Robertson, L.T. & Mitchell, J.R., 2013. Benefits of short-term dietary restriction in mammals. Experimental gerontology, 48(10), pp.1043–8.

Shay J.W., Wright W.E. 2000. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. Oct;1(1), pp.72-76.

Zhang D. et al., 2013. Homocysteine-related hTERT DNA demethylation contributes to shortened leukocyte telomere length in atherosclerosis. Atherosclerosis. Nov; 231(1), pp.173-179.

Zhang D.H., Wen X.M., Zhang L. &  Cui W., 2014. DNA methylation of human telomerase reverse transcriptase associated with leukocyte telomere length shortening in hyperhomocysteinemia-type hypertension in humans and in a rat model. Circ J. 78(8), pp.1915-1923.

Wilcox D.C. et al., 2006. Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology  7, pp.173–177.