Most women are afraid to lift weights like men because they think they will look bulky and like the women we see on the left hand pictures. It is time to demystify this idea and explain why this is impossible (provided than no hormones and/or anabolic steroids are used), and why strength training is key and a great ally to improve a number of parameters, including body composition.

Overuse of low-intensity training protocols by women is too common. Too much emphasis is placed on cardio, machine use, treadmills, bicycles, light loads, and too little emphasis is put on what will promote better physiological adaptations for increasing women’s functional capacity – strength training. If you want to bring more years into your life, you should start looking at strength training as one of the most effective anti-aging tools on Earth. There is no system in our body that is not influenced by strength training! Have I told you that it is cheaper than the creams you rub on your body every day?

I will divide this article into three parts. First, let’s highlight the myths of strength training for women, which were already addressed by Ebben & Jensen in 1998 in Strengthening for women: debunking myths that block opportunity. Second, let’s highlight its main benefits, and third, let’s explain why you will not look like Arnold Schwarzenegger.

1. MYTHS OF STRENGTH TRAINING FOR WOMEN

  •  Strength training will cause women to become big and heavy.The truth is that strength training helps to reduce body fat and increase lean mass. These changes may result in a slight increase in weight since the lean mass is more dense than fat (note: if this disturbs you throw the scale away and look more at yourself in the mirror!). Strength training will result in increased strength, no change or a decrease in the hip and waist perimeters and a slight increase in the perimeter of the upper body. Only women who are genetically predisposed for hypertrophy and who participate in high volume and intensity workouts may see substantial increases in the circumference of their limbs.
  • Women should use different training methods than men.Women are often encouraged to use machines and to do many repetitions slowly because they are afraid that the use of free weights, manual resistance, explosive movements or exercises that use their body weight as resistance will cause injury. In fact, there is no evidence suggesting that women are more likely than men to injure themselves during strength training. The most important factors to reduce the risk of injury are based on exercise technique and training individualization.
  • Women should avoid high intensity training or training with high loads.Women are usually encouraged to use smaller weights in their strength training (i.e., light dumbbells) but the problem is that these light loads are substantially below what is required to promote physiological adaptations. Women need to train at intensities high enough to promote adaptations in bones, muscles, cartilage, ligaments and tendons. When the intensity of the exercise is low, that is, when the stimulus is insufficient, the physiological benefits are minimal. To maximize the benefits of strength training, women should train close to their maximum. For women who have had children, imagine that this is what you have to “push” to get the greatest benefits.In short, there is no reason for women to train differently from men with regard to training intensity. If you intend to get different results, you need to leave aerobic classes and pink weights to start lifting real weights.

2. STRENGTH TRAINING BENEFITS FOR WOMEN

In addition to improving body composition (loss of fat mass and increase in lean body mass), strength training will help you:

  •  Increase bone remodeling. You will get stronger bones and reduce the risk of osteoporosis (LINK, LINK, LINK). Keep in mind that stronger bones can also result in total weight gain, but this is good, strong bones are a sign of health;
  • Strengthen the connective tissue. You will increase your joint stability and reduce the risk of injury (LINK). As in the previous point, same thing can happen regarding weight gain;
  • Increase functional strength for activities you enjoy or for your daily activities (e.g. playing with your kids, carrying grocery shopping, climbing stairs).
  • Increase self-esteem and confidence. A stronger body will make your mind stronger and unstoppable!
  • Fight the effects of metabolic syndrome and other common chronic diseases in our society, such as cardiovascular disease, type II diabetes, cancer, fibromyalgia, rheumatoid arthritis and Alzheimer’s disease (LINK, LINK).
  • Increase longevity in a healthy way. Strength training will potentiate the release of anabolic hormones that play an important role in tissue regeneration and anti- aging (LINK).

In summary, strength training has the potential to restore the shape of your glutes, the glow of your skin and the tonus of those parts of the body that you think is only possible through surgery, miracle supplements and advanced techniques of “muscle toning”. Strength training can also help you live the life of your dreams.

3. WHY I WILL NOT BECOME ARNOLD SCHWARZENEGGER?

arnold-schwarzenegger-6-claves-del-exito

 

Women have different physiological characteristics from men and this is the reason why women have greater difficulty in gaining muscle than men. As I said at the beginning of this article, if there are no hormones and/or anabolic steroids involved, it is very unlikely that women will look like men.

  •  Diferences in muscle fibersAlthough women have the same types of muscle fibers that men have (fast-twitch fibers and slow-twitch fibers), the amount of muscle fibers they have and their size is smaller. Remember that slow-twitch fibers (type I) are used primarily in endurance efforts whereas fast-twitch fibers (type II) are used primarily in rapid and explosive movements. In women, because they have 70-75% type I fibers, it becomes even more difficult to move loads at high speeds. This means that the potential for increasing the cross-sectional area of the muscle (i.e. muscle size) and for increasing the rate of force development is lower in females than in males.
  • Diferences in strength and powerThe average total body strength of a woman corresponds to about 60% of the average total body strength of a man. In average, upper body strength in women ranges from 25-55% of men’s upper body strength. Regarding lower body strength, it seems that women are stronger in relative terms. In average their capacity is 70-75% of what is observed in men. It is therefore not surprising that most women find it more difficult to lift weights with arms and upper body (e.g. push-ups and pull-ups) than with legs and lower body (e.g. squats and lunges).
  • Diferences in hormone levelsThe most obvious difference in the mechanisms that determine the adaptations to training of men and women is the sex hormone, testosterone. Both men and women produce testosterone, the difference is that testosterone concentrations in men are 10 to 20 times higher than in women! It appears that women are more dependent on pituitary secretion from growth hormone and other growth factors to help mediate changes in muscle, bone and connective tissue. In fact, although strength training adaptations do not occur in the same way, it has been reported that women have higher bioavailable concentrations of growth hormone at rest than men. Fortunately, strength training and metabolic resistance training can also increase growth hormone levels.Also, if you begin to lift weights in a progressive manner, you will continue to maintain your femininity, you will not grow a mustache, beard or hair in your chest. You will not get bigger or full of muscles. On the contrary, you will get leaner, stronger, younger, smarter and much more attractive to the opposite sex. But do not be fooled, to get the greatest benefits in training, you need to work hard and realize that it takes serious effort to induce the metabolic adaptations you seek (e.g. improving body composition and biological aging). This does not happen overnight. You will need time, consistency and discipline. There are no miracle pills.

In conclusion, before beginning a strength training program, be aware that you must have movement competency in the first place. Just as you would not begin to calculate derivatives in mathematics before you know how to add and subtract, it also makes no sense to start lifting heavy loads if you have restrictions and/or asymmetries in your movement profile. The quality of movement is the foundational support for functional strength development so this “ingredient” will always have to come first.

For a graphic resource check out this nice infographic from Positive Health Wellness.

See you soon and enjoy 🙂

Pedro Correia

References

Ciccolo Joseph T, Carr Lucas J, Krupel Katie L, Longval Jaime L. The Role of Resistance Training in the Prevention and Treatment of Chronic Disease. American Journal of Lifestyle Medicine July/August 2010 vol. 4 no. 4 293-308.

Cussler EC, Lohman TG, Going SB, Houtkooper LB, Metcalfe LL, Flint-Wagner HG, Harris RB, Teixeira PJ. Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc. 2003 Jan;35(1):10-7.

Ebben WP, Jensen RL. Strength training for women: debunking myths that block opportunity. Phys Sportsmed. 1998 May;26(5):86-97. doi: 10.3810/psm.1998.05.1020.

Hurley BF, Hanson ED, Sheaff AK. Strength training as a countermeasure to aging muscle and chronic disease. Sports Med. 2011 Apr 1;41(4):289-306. doi: 10.2165/11585920-000000000-00000.

Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339-61.

Nickols-Richardson SM, Miller LE, Wootten DF, Ramp WK, Herbert WG. Concentric and eccentric isokinetic resistance training similarly increases muscular strength, fat-free soft tissue mass, and specific bone mineral measurements in young women. Osteoporos Int. 2007 Jun;18(6):789-96. Epub 2007 Jan 31.

Stone MH. Implications for connective tissue and bone alterations resulting from resistance exercise training. PubMed PMID: 3057317.

Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000 Dec; 15(12):2495-503.

Zatsiorsky V., Kraemer, W. Science and Practice of Strength Training 2nd Edition. Human Kinetics (2006).

 

Several lines of evidence suggests that mitochondrial dysfunction is associated with sarcopenia (loss of strength and muscle mass in aging). In every cell of our body there are hundreds or thousands of mitochondria, they exist in greater quantity in the most active organs and tissues (muscles, heart and brain). The reason we age faster derives from the constant injuries and insults inflicted to the mitochondria. Chronic stress, lack of sleep, poor eating choices, lack of exercise (particularly strength training), alcohol, tobacco, and exposure to pollutants are just a few examples of how our lifestyle can influence the function of these small structures.

Mitochondria are the organelles responsible for energy production in our body. If you feel always tired, if you experience memory loss, if you have frequent muscle pain and if you are one of those people taking medications for cholesterol, hypertension, diabetes and other chronic diseases, it is very likely that your mitochondria are not in “great shape”. But let’s look at some evidence.

This study may be considered revolutionary because of its highly relevant findings regarding the benefits of strength training in older people. This study was published in 2007 and was the first study human study to demonstrate that strength training can reverse the aging process at molecular level. If it was a drug or a food supplement demonstrating these effects, I think everyone already knew.

Sample

The researchers recruited 25 healthy elderly people (mean age 68 years), who already did some type of physical exercise (walking, gardening, tennis, golf, cycling) three to four times a week, and 26 young adults (mean age 24 years) relatively inactive, some of them participating in recreational activities.

The authors selected relatively active older adults and sedentary young adults in order to study the aging process on healthy elderly and not just the putative aging effect of physical inactivity. All older subjects underwent a thorough screening process before being admitted to the study to ensure that other factors (e.g. metabolic diseases) would alter mitochondrial function.

All subjects completed a medical evaluation before participating in the study. Exclusion criteria were: evidence of heart disease (by history and sub-maximal graded exercise test); hypertension; chronic obstructive pulmonary disease; diabetes mellitus; renal insufficiency; orthopedic injury and smoking. None of the subjects had previously participated in a structured resistance training program.

Training Program

Subjects performed resistance exercises with supervision on two nonconsecutive days of the week (monday/thursday or tuesday/friday) for 26 weeks (six months). The subjects performed twelve different exercises including chest press, leg press, leg extension, leg flexion, shoulder press, lat pull-down, seated row, calf raises, crunches, back extensions, bicep curl and triceps extension.

Subjects initially started with a set of 50% of 1 maximal repetition (1RM), and gradually increased to three sets at 80% of their 1RM during the intervention period. Subjects tested their 1RM for every exercise every two weeks, and training loads were adjusted to maintain 80% of their 1RM.

Muscular Biopsy

All younger subjects (N = 26) underwent a muscle biopsy (incision and extraction of a small part of muscle) from the vastus lateralis (thigh muscle) before and after the 26-week study. The elderly subjects (= 25) did their biopsies before the study and after (N = 14) of the study. Muscle RNA (ribonucleic acid) was analyzed to determine age-related gene expression variation.

Results

The authors identified 596 genes that were differentially expressed between the two age groups. Of the 596 genes, the researchers identified 179 associated with age and exercise that showed a remarkable reversal in their expression profile after six months of resistance training. This literally means that resistance training not only can slow down but also reverse the aging process at the genetic level. The genetic expression of the elderly individuals became similar to those of the younger group. The researchers also noted that mitochondrial dysfunction (closely related to physical inactivity) began to reverse after six months of training.

As for muscular strength, results were as expected, that is, the ones who strength trained got stronger. The initial gap of 59% in maximal isometric strength in older people vs. young adults was reduced to 38% after six months of resistance training.

Conclusions

Nowadays, it is widely accepted that physical exercise is associated with a decrease in morbidity and mortality in humans. This is not a belief. What people probably do not know is that there are forms of physical exercise that are more effective in increasing strength and longevity. This study demonstrated for the first time that resistance training can reverse age-related aspects at the gene level. Yes, you are reading well, resistance training can reverse aging at the molecular level!

The fact that older people got stronger was no surprise to me and certainly not for fitness professionals. It is not uncommon for older people to begin their training with minimum weights and, in a short time, evolve to loads equal to or greater than those in their twenties. It’s all about dedication, consistency and method.

Over the years, personal trainers and fitness professionals have been preaching their clients / athletes about the importance of physical exercise in improving health. This message, in my opinion, has not been well perceived by most people. Understanding the notion that movement and physical exercise is as important as the food they eat every day is, unfortunately, still lacking.

In short, this fascinating study is basically telling us that it is within our power to increase health and longevity. In this case, the “fountain of youth” is something we know and something that is relatively accessible to everyone – Strength Training.

However, for these benefits to occur, people have to be willing to work hard and with consistent effort, something rare in our “all in moderation” oriented society. Most people are in search of a miraculous pill and rather rely on faith than doing something for themselves. Therefore, I believe that only focused individuals and those who follow these principles in training (and in life) will end up having the most benefits. Things will not happen by chance, certainly.

See you soon!

Pedro Correia

References

Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A (2007) Resistance Exercise Reverses Aging in Human Skeletal Muscle. PLoSONE 2(5): e465. doi:10.1371/ journal.pone.0000465