Sem categoria

 

A International Society of Sports Nutrition (ISSN) publicou um “position stand” em 2017 (ver referência abaixo) acerca da segurança e eficácia da suplementação com creatina no contexto do exercício, desporto e medicina.

A suplementação com creatina, um dos mais populares e estudados suplementos nutricionais, tem de facto mostrado ser eficaz em melhorar a performance atlética (sobretudo em exercício de alta intensidade) e induzir adaptações ao treino relevantes. O aumento consequente das reservas intramusculares de creatina (e fosfocreatina) facilita a ressíntese rápida de ATP, denominada como “moeda de troca” energética essencial para quase todas as reacções no nosso corpo. Assim, o aumento da disponibilidade de creatina na célula através da suplementação contribui para melhorar o desempenho, pois aumenta a disponibilidade de energia para exercício (i.e., contracção muscular), bem como para todo um espectro de outras reacções relacionadas com as células musculares. De facto, suplementação de creatina pode aumentar a capacidades de produção de força, trabalho muscular, acelerar a recuperação e ajudar a prevenir lesões.

Adicionalmente, a suplementação com creatina parece ser altamente segura e eficaz não só em atletas mas também em não-atletas (tais como os chamados entusiastas do exercício físico) e ainda em várias populações clínicas. De facto, vários estudos (ver artigo da ISSN, referência abaixo) apontam para benefícios na suplementação de creatina nas mais variadas populações e contextos clínicos, tais como:

– Acelerar a reabilitação de lesões (porque atenua a atrofia muscular);

– Protecção de lesões neuronais (medulares e cerebrais);

– Atenuar as consequências debilitantes em pessoas com síndromas congénitos de deficiência de síntese de creatina;

– Atenuar a progressão de doenças neurodegenerativas (e.g. doença de Huntington, doença de Parkinson, doenças mitocondriais, esclerose lateral amiotrófica)

– Prevenir e/ou melhorar a bioenergética em pacientes com isquemia do miocárdio ou vítimas de acidente vascular cerebral;

– Melhorar indicadores metabólicos e funcionais associados ao envelhecimento;

– Possível benefício durante a gravidez para o óptimo crescimento, desenvolvimento e saúde do feto.

Em conclusão, a creatina parece de facto ser um suplemento nutricional seguro e com benefícios para as mais variadas populações e idades. Este é um suplemento que de facto funciona!

Desfruta do poder da creatina!

Nuno Correia

Referências:

Kreider, R.B. et al., 2017. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1), p.18. Available at: http://jissn.biomedcentral.com/articles/10.1186/s12970-017-0173-z.

 

“As pessoas não decidem o seu futuro, as pessoas decidem os seus hábitos e os seus hábitos decidem o seu futuro.”

– F. M. Alexander

Há nove anos atrás (2010)1, o European Working Group on Sarcopenia in Older People (EWGSOP) publicou uma definição de sarcopenia que foi amplamente utilizada em todo o mundo e essa definição fomentou avanços na identificação e no cuidado de pessoas em risco ou com sarcopenia. Ficou definida como uma síndrome caracterizada pela perda progressiva e generalizada de massa muscular e força com risco de resultados adversos, como incapacidade física, pobre qualidade de vida e morte. Porque a relação entre massa muscular e força não é linear (a capacidade de gerar força não depende apenas da massa muscular), os critérios para o seu diagnóstico incluíam baixa massa muscular e baixa função muscular (i.e força ou performance física).

Depois de sabermos que, em 2016, a sarcopenia foi classificada como uma doença pela Organização Mundial de Saúde, conforme foi referido na primeira parte deste artigo, o EWGSOP22 actualizou a sua definição operacional e as várias estratégias de diagnóstico, considerando agora que a força muscular (medida através da força de preensão ou do teste de levantar-se da cadeira) é o principal parâmetro para medir a função muscular, ainda mais importante que a quantidade de massa muscular. Portanto, é neste contexto, que justificamos o título deste artigo e que reforçamos a importância de partilhar esta mensagem com todos os profissionais de saúde.

As implicações desta condição na saúde humana são várias e largamente conhecidas: aumento do risco de quedas e fracturas3,4; prejudica a realização das actividades da vida diária5; está associada com doença cardíaca6, doença respiratória7 e disfunção cognitiva8; menor qualidade de vida9; perda de independência10,11,12 e morte13.  Em termos financeiros, os custos na saúde pública também já foram calculados em vários trabalhos. Num estudo de Janssen et. al.14, em 2004, os custos da sarcopenia nos Estados Unidos foram estimados em 18,5 biliões de dólares anuais, representando cerca de 1,5% dos custos totais na saúde. Num estudo realizado cá em Portugal no Hospital de Santo António no Porto e publicado em 201615, verificou-se que os custos de hospitalização associados à sarcopenia foram superiores em 58,5% para pacientes com idade inferior a 65 anos e em 34% para pacientes com idade igual e superior a 65 anos. Mais recentemente (2018), no Hertfordshire Cohort Study no Reino Unido16, verificou-se que os custos associados com a falta de força muscular foram estimados em 2,5 biliões de libras anuais.

No cenário actual, em que o fenótipo do envelhecimento doentio prolifera a olhos vistos em todas as nações industrializadas, em que doenças como a hipertensão, o cancro, a depressão, o alzheimer e a diabetes tipo II estão a acabar com a vida das pessoas, é fundamental adoptar medidas que visem a melhoria da função de cada indivíduo ao invés do diagnóstico de doenças e da administração de medicamentos que, além de não contribuírem para resolver este problema, poderão ainda agravar a sua condição. Sabemos que os problemas de saúde principais estão relacionados com a má alimentação, com a inactividade física, com a falta de sono, com o excesso de álcool, com a exposição ao tabaco e aos ambientes poluídos mas também com a falta de movimento de qualidade, de vigor e de força muscular.

Os benefícios do treino de força na saúde estão bem sustentados na literatura científica e os mais importantes serão porventura os seguintes: diminuição da pressão arterial; diminuição do risco de osteoporose e sarcopenia; melhoria do perfil lipídico; aumento da capacidade cardiorespiratória; prevenção e gestão de dores crónicas; aumento da sensibilidade à insulina; melhoria do bem estar e auto-confiança. Mais, já são vários os estudos17,18,19 que têm mostrado uma forte e consistente correlação entre o aumento de força e massa muscular com a diminuição da mortalidade, reforçando o facto que o declínio da força associado aos níveis de sedentarismo actuais e ao envelhecimento precisam de ser tratados. Logo, um programa de treino de força bem desenhado, que atenda à competência do indivíduo e que respeite os princípios do treino, vai melhorar todos os indicadores de saúde atrás referidos e ainda todas as qualidades físicas necessárias (força, potência, velocidade, agilidade, equilíbrio, coordenação, mobilidade, endurance) para a realização das actividades da nossa vida diária. São estes parâmetros da função física que estão actualmente sendo propostos como biomarcadores do envelhecimento nos seres humanos20.

Por consequência, a programação do treino é que será o factor determinante nesta equação. E se é certo que este processo requer o conhecimento imperativo das ciências do desporto, é preciso não esquecer que o mesmo também requer trabalho aplicado no terreno e arte na instrução. Em vez de andarmos tão preocupados em seguir as guidelines e procurarmos pelos resultados estatisticamente significativos, devemos sim preocupar-nos que a nossa abordagem seja relevante para a vida da pessoa. Porque nós trabalhamos com pessoas. Pessoas que têm limitações de tempo para treinar. Pessoas com diferentes responsabilidades familiares e profissionais. Pessoas que têm vidas diferentes umas das outras. Pessoas que têm uma série de problemas metabólicos e/ou ortopédicos que nenhum estudo randomizado controlado jamais conseguirá reproduzir! Sim, este é um processo complexo.

Finalmente, sabemos que um dos mecanismos responsáveis pela atrofia muscular, sarcopenia e envelhecimento é a apoptose, a morte programada das células e um processo fundamental no envelhecimento. Mas quando treinamos, comemos e descansamos adequadamente estamos a enviar um sinal ao nosso corpo para a criação de um ambiente anabólico, um ambiente que potencia a libertação de factores de crescimento e que suprime a apoptose. Ou seja, o treino de força é um factor de crescimento macroscópico que suprime a morte programada das células (i.e. apoptose) mas ao contrário dos medicamentos em que o aumento na dose significa mais doença e dependência, um aumento na carga (mesmo que reduzido) significa mais saúde, mais força e mais vigor. Desta forma, as decisões diárias caberão sempre a cada um: tratar o corpo como um Ferrari ou tratar o corpo como um carro de aluguer.

Pedro Correia

Referências:

  1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 2010; 39: 412–23.
  2. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan 1;48(1):16-31.
  3. Bischoff-Ferrari HA, Orav JE, Kanis JA et al. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int 2015; 26:2793–802.
  4. Schaap LA, van Schoor NM, Lips P et al. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study Amsterdam. J Gerontol A Biol Sci Med Sci 2018; 73: 1199–204.
  5. Malmstrom TK, Miller DK, Simonsick EM et al. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle 2016; 7: 28–36.
  6. Bahat G, Ilhan B. Sarcopenia and the cardiometabolic syndrome: a narrative review. Eur Geriatr Med 2016; 6: 220–23.
  7. Bone AE, Hepgul N, Kon S et al. Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis 2017; 14: 85–99.
  8. Chang KV, Hsu TH, Wu WT et al. Association between sarcopenia and cognitive impairment: a systematic review and metaanalysis. J Am Med Dir Assoc 2016; 17: 1164.e7–64.e15.
  9. Beaudart C, Biver E, Reginster JY et al. Validation of the SarQoL(R), a specific health-related quality of life questionnaire for Sarcopenia. J Cachexia Sarcopenia Muscle 2017; 8: 238–44.
  10. Dos Santos L, Cyrino ES, Antunes M et al. Sarcopenia and physical independence in older adults: the independent and synergic role of muscle mass and muscle function. J Cachexia Sarcopenia Muscle 2017; 8: 245–50.
  11. Akune T, Muraki S, Oka H et al. Incidence of certified need of care in the long-term care insurance system and its risk factors in the elderly of Japanese population-based cohorts: the ROAD study. Geriatr Gerontol Int 2014; 14: 695–701.
  12. Steffl M, Bohannon RW, Sontakova L et al. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging 2017; 12: 835–45.
  13. De Buyser SL, Petrovic M, Taes YE et al. Validation of the FNIH sarcopenia criteria and SOF frailty index as predictors of long-term mortality in ambulatory older men. Age Ageing 2016; 45: 602–8.
  14. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004 Jan;52(1):80-5.
  15. Sousa AS, Guerra RS, Fonseca I, Pichel F, Ferreira S, Amaral TF. Financial impact of sarcopenia on hospitalization costs. Eur J Clin Nutr. 2016 Sep;70(9):1046-51. doi: 10.1038/ejcn.2016.73. Epub 2016 May 11.
  16. Pinedo Villanueva, R. A., Westbury, L. D., Syddall, H. E., Sanchez, M., Dennison, E. M., Robinson, S. M., & Cooper, C. (2018). Health care costs associated with muscle weakness: a UK population-based estimate. Calcified Tissue International.
  17. Ruiz JR, Sui X, Lobelo F, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337(7661):a439. Published. doi:10.1136/bmj.a439.
  18. Srikanthan P, Karlamangla AS. Muscle mass index as a predictor of longevity in older adults. Am J Med. 2014;127(6):547-53.
  19. Dos Santos L, Cyrino ES, Antunes M, Santos DA, Sardinha LB. Changes in phase angle and body composition induced by resistance training in older women. Eur J Clin Nutr. 2016 Dec;70(12):1408-1413. doi: 10.1038/ejcn.2016.124. Epub 2016 Jul 13. PubMed PMID: 27406159.
  20. Cadore EL, Izquierdo M. Muscle Power Training: A Hallmark for Muscle Function Retaining in Frail Clinical Setting. J Am Med Dir Assoc. 2018 Mar;19(3):190-192.

 

Existe atualmente evidência científica suficiente para afirmarmos que o treino de força é um método eficaz ao nível da prevenção, tratamento e, potencialmente, da reversão de várias doenças crónicas. Efectivamente, a adesão a um programa de treino de força devidamente desenhado pode aumentar de forma significativa a saúde física e mental da população.

A importância é tal que são várias as organizações de renome mundial (Organização Mundial de Saúde, Centers for Disease Control and Prevention, American Heart Association, American Association for Cardiovascular and Pulmonary Rehabilitation, American College of Sports Medicine) que recomendam esta forma de treino para manter a saúde.

No entanto, apesar desta evidência, a maior parte da referenciação para o exercício é ainda o treino aeróbio e são poucos os médicos (e profissionais de saúde em geral) que fazem a referenciação para o treino de força. Este artigo tem como objectivo alertar para a relevância e para o impacto valioso do treino de força na saúde.

Cerca de 100% da nossa existência biológica tem sido dominada pela actividade outdoor. Caçar e procurar comida tem sido uma condição da vida humana durante milhões de anos1. Ou seja, se no passado era preciso fazer esforço (i.e. actividade física) para encontrar comida hoje em dia a comida vem ter connosco sem ter que fazermos esforço nenhum. Portanto, passamos de um estilo de vida bastante activo para um estilo de vida altamente sedentário. Com consequências graves ao nível da saúde pública. Se antigamente todas as pessoas tinham que exercer algum esforço físico para fazer a sua vida normal hoje em dia a maior parte não tem essas necessidades. O ambiente mudou e as pessoas também mudaram. Estão mais fracas, mais doentes, têm mais dores crónicas e estão cada vez mais dependentes de medicamentos. Mas a mensagem que ainda se passa na nossa sociedade (e em consultas médicas) é “não faça esforços e faça a sua vida normal”. E eu acredito que este é o pior conselho que se pode dar às pessoas! A vida normal? Mas que conselho é este? Como é que o normal pode ser bom? É preciso estar completamente alienado da realidade para poder fazer recomendações deste género.

Hoje em dia temos mais oportunidades do que nunca para construir um fenótipo saudável e forte. O fenótipo é a expressão do nosso organismo e este, depende em grande parte, das escolhas que fazemos todos os dias. Dois organismos podem ter o mesmo genótipo, o mesmo DNA, mas diferentes fenótipos – baseado nas suas experiências e no ambiente. É certo que há coisas que não conseguimos controlar como a nossa herança genética, o local do Mundo onde nascemos / vivemos, a sorte e o ambiente. Mas há muitas coisas que conseguimos controlar e que depende exclusivamente das nossas prioridades na vida e das nossas escolhas diárias (exemplos: hábitos de exercício, alimentação, sono, gestão do stress, tabagismo, álcool, exposição a ambientes poluídos). E eu acredito que o exercício físico em geral (e o treino de força em particular) é o factor mais importante de todos. É o mais potente, é quantificável e actua rapidamente em todos os sistemas e orgãos do corpo humano.

A realidade é esta: a população está envelhecida e com mais doenças crónicas / não transmissíveis. As principais doenças não transmissíveis são as doenças cardiovasculares, cancros, doenças respiratórias crónicas e diabetes. Só estes quatro grupos de doenças contam mais de 80% para as 41 milhões de mortes no Mundo2! De acordo com o primeiro relatório sobre envelhecimento saudável da Organização Mundial de Saúde (OMS) espera-se que o número de pessoas com mais de 60 anos duplique em 20503 e é neste contexto que precisamos de intervir com urgência no sentido de promover a autonomia motora e melhorar a capacidade funcional das pessoas. As tradicionais recomendações das caminhadas, da natação, do Pilates e de “fazer esforços de baixa intensidade” ou “não fazer esforços” provavelmente precisam de ser reconsideradas e devidamente contextualizadas.

É neste âmbito que o treino de força e o treino das qualidades físicas assumem um papel lapidar. Todas as pessoas (atletas e não atletas) precisam de treinar as suas qualidades físicas para viver com qualidade e de forma independente. Depois dos 30 anos de idade, os adultos perdem 3-8% da sua massa muscular por cada década. Ao longo do tempo, a perda de massa magra contribui para uma diminuição da força muscular e da potência, importantes preditores de equilíbrio, da ocorrência de quedas e de mortalidade4. No caso dos idosos é importante assinalar que as quedas são a principal causa de morte acidental após os 65 anos e são as fracturas das ancas aquelas que afectam em maior extensão a independência dos mesmos5.

Quando falo em força refiro-me à base para interagirmos com o ambiente à nossa volta, à fundação para o desenvolvimento das outras qualidades físicas (mobilidade, potência, velocidade, agilidade, endurance muscular), à capacidade de produzir força contra uma resistência externa (pode ser o chão ou outro objecto qualquer) através das contracções musculares. Esta é, provavelmente, a capacidade mais treinável que dispomos e aquela que poderá ter maiores repercussões na melhoria da nossa função, na nossa independência e na nossa longevidade funcional. Tarefas como caminhar rapidamente, sentar e levantar de uma cadeira, subir escadas, manter o equilíbrio, carregar malas ou brincar com os filhos / netos, são exemplos de actividades da nossa vida diária que requerem uma componente mínima das várias manifestações de força (força máxima, força rápida e força de resistência). Portanto, tanto a força como o músculo (mais a sua qualidade que quantidade), são parâmetros da função física que precisam de ser cuidados na construção do fenótipo do envelhecimento saudável.

Estas questões assumem maior importância ainda quando constatamos que a partir do passado dia 1 de Outubro de 2016, na décima revisão da classificação internacional de doenças (ICD-10), a sarcopenia foi classificada como uma doença pela OMS sendo detentora de um código próprio (M62.84). Isto deverá levar a um aumento na disponibilidade de ferramentas de diagnóstico e a um maior entusiasmo da indústria farmacêutica para desenvolver medicamentos para combater a sarcopenia6. Mas na minha opinião isto também representa uma grande oportunidade para os profissionais do exercício poderem ajudar no combate desta doença, já que será o treino de força (devidamente orientado como é óbvio) o estímulo mais potente na sua prevenção e tratamento.

Pedro Correia

Referências:

  1. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Comprehensive Physiology. 2012;2(2):1143-1211. doi:10.1002/cphy.c110025.
  2. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016; 388(10053):1659-1724.
  3. Beard JR, Officer A, de Carvalho IA, et al. The world report on ageing and health: A policy framework for healthy ageing. Lancet 2016;387:2145e2154.
  4. English KL, Paddon-Jones D. Protecting muscle mass and function in older adults during bed rest. Current Opinion in Clinical Nutrition and Metabolic Care. 2010;13(1):34-39. doi:10.1097/MCO.0b013e328333aa66.
  5. National Center for Injury Prevention and Control of the Centers for Disease Control and Prevention. Preventing Falls: A Guide to Implementing Effective Community-Based Fall Prevention Programs 2nd edition. Atlanta: 2015.
  6. Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016 Dec;7(5):512-514. Epub 2016 Oct 17. PubMed PMID: 27891296; PubMed Central PMCID: PMC5114626.

 

A Força de Preensão está correlacionada com a força dos membros superiores, força geral do corpo e capacidade funcional, assim como, estado nutricional, densidade mineral óssea, fatores de risco cardiovascular e mortalidade.

Como é que a Força de Preensão pode ter um papel importante na prevenção de lesões, reabilitação e desempenho desportivo?

– Padrões de co-ativação: Existe uma conexão neurológica entre a preensão manual e a coifa dos rotadores. Isso significa que o feedback propriocetivo dos nervos periféricos tem um impacto direto sobre a excitabilidade dos músculos da coifa dos rotadores, melhorando a centragem da cabeça do úmero e auxiliando na estabilização do ombro durante o uso do braço e mão.

– Irradiação: Quando um músculo contrai de forma intensa emite impulsos neurais que atingem os músculos adjacentes, fazendo com que estes participem na ação, aumentando a estabilidade postural e permitindo uma transferência de força mais eficiente.

– Dor no Cotovelo: Das inúmeras razões que podem levar a sintomas de dor ao nível do cotovelo, uma das causas pode ser a relação de forças inadequadas entre os músculos do cotovelo e músculos do antebraço. Se os flexores do cotovelo forem muito fortes em relação aos flexores do antebraço, a tensão irregular acumula-se nos tecidos moles provocando dor.

– Avaliação e Controlo da Performance: Sendo a força de preensão um excelente preditor da força total do corpo, este pode ser utilizado como elemento de avaliação e controlo da performance desportiva. Valores de força de preensão abaixo dos valores de referência (individuais) ou dos aferidos no início da sessão de treino anterior, pode ser um indicador de fadiga.

Quantas mais razões são necessárias para ter um bom “aperto de mão”?

Patrick Filipe

Referências:

National Conference & Exhibition Bridging The Gap 2016. Grip Strength: Unleash the secret to primal strength, injury prevention, and overall health. Dr. Arianne Missimer.

 

Para manterem a função física, recuperarem melhor de lesões, manterem massa magra e manterem-se mais saudáveis de um modo geral, indivíduos mais velhos necessitam de uma maior ingestão de proteína do que indivíduos jovens. Uma ingestão maior de proteína contribui para atenuar processos inflamatórios e catabólicos, bem como o decréscimo de eficiência no metabolismo da proteína associado com a idade.

De acordo com as recomendações avançadas pelo PROT-AGE Study Group (2013) (referência abaixo), indivíduos mais velhos deverão:
– ingerir PELO MENOS 1 a 1.2 g/kg de peso corporal de proteína por dia;
– ingerir AINDA MAIS se sofrem de doenças agudas ou crónicas, entre 1.2-1.5 g/kg de peso corporal de proteína por dia;
– ingerir AINDA MAIS se se encontram sub-nutridos e/ou sofrem duma doença ou lesão severa, ~2g/kg de peso corporal de proteína por dia;
– limitar a ingestão de proteína se sofrem de DOENÇA RENAL SEVERA E NÃO ESTÃO EM HEMODIÁLISE, sendo portanto UMA EXCEPÇÃO. E não, a doença renal NÃO é provocada pela ingestão de proteína;
– usar suplementação para atingir os níveis de ingestão de proteína desejados;
– E, claro, FAZER EXERCÍCIO que promova de forma mais eficaz a manutenção ou incremento de massa magra, ou seja, treino de força.

E não, a doença renal NÃO é causada pela ingestão de proteínas. Num estudo em que se acompanhou durante o período de um ano homens treinados em treino de força que consumiam ~2,51-3,32g/kg de peso corporal por dia durante um ano, não se verificou quaisquer efeitos prejudiciais no perfil lipídico de no sangue, bem como nas funções hepática e renal (Antonio et al, 2016).

A manutenção de força e massa magra (inclui massa muscular, massa óssea e do tecido conjuntivo) estão identificados como os primeiros e mais relevantes biomarcadores de saúde e longevidade. A melhoria destes marcadores produz um “efeito dominó” positivo e poderoso na grande parte (provavelmente todos) dos outros marcadores de saúde. A ingestão adequada de proteína e treino de força é essencial para construção de massa magra. E ainda mais determinante à medida que envelhecemos para contrapor a inevitável perda progressiva de eficiência no nosso metabolismo.

Não receie a proteína nem o treino de força. Estes são, provavelmente, dois dos seus melhores aliados para viver melhor e mais tempo.

Bom almoço e não se esqueça da proteína!

Nuno Correia

Referências:

Bauer, J. et al., 2013. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the prot-age study group. Journal of the American Medical Directors Association, 14(8), pp.542–559.

Antonio, J., Ellerbroek, A., Silver, T., Vargas, L., Tamayo, A., Buehn, R., & Peacock, C. A. (2016). A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males. Journal of nutrition and metabolism, 2016, 9104792.

 

O Press é uma excelente “ferramenta” para construir força e massa muscular ao nível da parte superior do corpo. Está presente em muitos programas de treino de força e condição física, sobretudo no contexto desportivo. Seguem-se algumas das razões pelo qual este deve fazer parte de um programa de treino de força, para além de construir ombros grandes e fortes!

1) DESENVOLVIMENTO MUSCULAR: O Press é um dos exercícios mais efetivos para um desenvolvimento equilibrado da cintura escapular. Apesar do seu foco ser predominantemente no deltóide anterior, este também envolve o deltóide medial e posterior. Além do deltóide também o trapézio é fortemente envolvido na execução, sobretudo no momento do bloqueio final do movimento (Lockout) em que é necessário estabilizar a barra, impedindo que esta se desloque para a frente ou para trás.

2) ESTABILIDADE DO TRONCO: A execução do Press é extremamente exigente para os músculos estabilizadores do tronco. Uma revisão sistemática da literatura (Martuscello et al., 2012) demonstrou, através da atividade eletromiográfica dos músculos estabilizadores do tronco, que exercícios como Agachamento, Peso Morto e Press são mais efetivos quando comparados com exercícios “específicos” para a estabilização do tronco como Abdominal Crunch ou Prancha (com/sem plataformas instáveis).

3) MELHORIAS NO SUPINO: Uma das melhores formas de alcançar uma execução sólida no supino é através da realização do Press. O Press exige uma maior ativação da musculatura da parte superior das costas, fortalecendo músculos responsáveis pela fase excêntrica do supino, sendo esta de extrema importância para a conclusão do movimento. Devido a vários mecanismos de inibição, a progressão ao nível do supino é muitas vezes bloqueada, podendo levar a longos períodos de estagnação. Ed Coan, uma lenda no Mundo do Powerlifting, afirmou ter quebrado um longo período de estagnação após a inclusão do Press na sua rotina de treino.

4) TRANSFER: O Press é um dos exercícios mais vantajosos ao nível dos membros superiores devido ao transfer positivo em inúmeras habilidades no contexto desportivo. A grande maioria das modalidades desportivas exigem o uso da força dos membros superiores para transmitir essa força ao longo de uma cadeia cinética que tem início no chão. Sempre que um atleta empurra um oponente, lança um objeto ou usa uma raquete ou taco para transmitir força para determinado objeto, a força tem início com os pés contra o chão. A força produzida durante a execução do Press não é exclusiva dos membros superiores, envolve todo o corpo de forma a proporcionar a estabilização necessária, ou seja, a produção e transmissão de força entre a base de suporte e a carga movida inicia-se no chão e termina na barra nas mãos.

No entanto, a sua execução é complexa e exigente, é necessário garantir que todas as estruturas envolvidas têm a capacidade para realizar o movimento ao longo de toda a amplitude. Desta forma é possível aprender, consolidar e incrementar carga com segurança, beneficiando de todas as vantagens anteriormente referidas. Para saber se está apto a introduzir o Press nos seus treinos procure o aconselhamento de um profissional qualificado.

Patrick Filipe

Referências:

Saeterbakken, A.H. Fimland, M.S. Effects of Body Position and Loading Modality on Muscle Activity and Strength in Shoulder Presses. Journal of Strength and Conditioning Research 2013, 27, 7, 1824-1831.

Martuscello, J. (2013). Systematic review of core muscle activity during physical fitness exercises. J Strength Cond Res 27(6)/1684-1698.

Rippetoe, M., & Kilgore, L. (2011). Starting Strength: Basic Barbell Training. 3rd ed. Wichita Falls, TX: Aasgaard Co.

 

Um dos mais sérios problemas de saúde pública na Europa é a obesidade. A sua prevalência atingiu proporções epidémicas, pois triplicou nas últimas duas décadas. Segundo a World Health Organization (WHO) em 2010, existiam 15 milhões de crianças e adolescentes que teriam obesidade. Diversas patologias estão associadas à obesidade como a diabetes mellitus tipo 2, doenças cardiovasculares e, mais recentemente, a síndrome metabólica que conjuga os seguintes fatores de risco: obesidade abdominal, hipertensão, dislipidémia e resistência à insulina. Esta doença afeta entre 20 a 30% da população total da Europa (WHO, 2007).

Segundo a revisão de Lobstein, Baur, & Uauy (2004), estima-se que 10% das crianças em idade escolar (5 – 17 anos) em todo o mundo apresentam excesso de peso. Na Europa os valores são ainda mais alarmantes, pois a prevalência atinge os 20%.

Em Portugal, considerando as crianças entre os 7 e 9 anos de idade a taxa de prevalência é a mais elevada de toda a Europa (32%). A epidemia da obesidade tem vindo a progredir de forma alarmante e concluiu-se que aproximadamente 38% das crianças europeias em idade escolar tenham excesso de peso e que mais de um quarto apresentavam obesidade (WHO, 2007).

O treino de força (TF) tem ganho popularidade entre os adolescentes com obesidade. Através de uma correcta prescrição e supervisão, estes programas de exercício são um método seguro de desenvolvimento da força muscular (Nowicka & Flodmark, 2007; Wafs, Jones, Davis, & Green, 2005). Seguindo uma progressão apropriada do volume e intensidade de treino, os adolescentes com obesidade poderão ter sucesso e divertir-se (Nowicka & Flodmark, 2007; Wafs et al., 2005).

O TF ajuda a desenvolver a massa isenta de gordura (MIG) e a atenuar o decréscimo da taxa metabólica de repouso que ocorre em algumas estratégias alimentares de perda de peso corporal (Wafs et al., 2005).

Embora o TF não seja caracterizado por um elevado dispêndio energético, este tipo de exercício é uma componente importante de um programa de perda de peso, pois além de melhorar a força e resistência musculares, influencia positivamente a densidade mineral óssea, a capacidade cardiorrespiratória, a dislipidémia e a composição corporal (Faigenbaum, 2007; Faigenbaum & Westcof, 2007).

Os adolescentes com obesidade apresentam alguma relutância em permanecerem activos devido às dificuldades motoras causadas pelo elevado peso corporal. Daí, considerarem as actividades aeróbias como aborrecidas e desconfortáveis (Faigenbaum & Westcof, 2007; Faigenbaum et al., 2007). No entanto, parecem apreciar o treino de força, porque este caracteriza-se por períodos curtos de esforço, seguidos de uma pequena pausa entre séries ou exercícios. Ao contrário do que acontece com o exercício aeróbio, a sua forma intervalada e não contínua é semelhante aos movimentos e deslocamentos realizados pelas crianças e adolescentes quando jogam e brincam (Faigenbaum & Westcof, 2007; Faigenbaum et al., 2007).

Os jovens com obesidade, por norma, são os mais fortes da turma e recebem feedback positivo, devido à sua capacidade de levantar cargas elevadas nos exercícios de força. Ao contrário do exercício aeróbio contínuo, a participação num TF dá a possibilidade destes jovens se destacarem positivamente perante os colegas com peso saudável. Assim, ganham confiança e motivação para se tornarem mais activos (Faigenbaum & Westcof, 2007; Faigenbaum et al., 2007).

Pedro Ribeiro

 

Referências:

Faigenbaum, A. D. (2007). State of the Art Reviews: Resistance Training for Children and Adolescents: Are There Health Outcomes? American Journal of Lifestyle Medicine, 1(3), 190–200. doi:10.1177/1559827606296814.

Faigenbaum, A. D., & Westcof, W. L. (2007). Resistance Training for Obese Children and Adolescents. President’s Council on Physical Fitness and Sports – Research Digest, (3), 2–8.

Lobstein, T., Baur, L., & Uauy, R. (2004). Obesity in children and young people: a crisis in public health. Obesity Reviews, 5(1), 4–85.

Marshall, W. a., & Tanner, J. M. (1969). Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44(235), 291–303. doi:10.1136/adc.44.235.291.

Nowicka, P., & Flodmark, C.-E. (2007). Physical activity-key issues in treatment of childhood obesity. Acta Paediatrica, 96(454), 39–45. doi:10.1111/j.1651-2227.2007.00169.x

Wafs, K., Jones, T. W., Davis, E. A., & Green, D. (2005). Exercise Training in Obese Children. Sports Medicine, 35(5), 375–392.

World Health Organization. (2007). The challenge in the WHO European Region and the strategies for response: summary. (F. Branca, H. Nikogosian, & T. Lobstein, Eds.). World Health Organization Europe.

 

 

O carácter profilático do exercício físico intenso e em particular do treino de força é cada vez mais reconhecido. De facto, é difícil encontrar um “comprimido” ou “medicamento” com um impacto positivo tão significativo em todos os órgãos e sistemas do nosso corpo. Contudo, muitas dúvidas e informação errónea existe quanto à segurança do treino de força com pessoas em condições de maior fragilidade, como por exemplo pessoas que se encontram doentes ou que foram recentemente sujeitas a tratamentos debilitantes. Os doentes oncológicos enquadram-se neste perfil, pois a doença em si é debilitante e os tratamentos seguidos (quimioterapia e radioterapia) podem ser muito debilitantes e indutores de efeitos secundários adversos.

Um exemplo comum destes casos é a ocorrência de linfedema no contexto do cancro da mama. Num estudo recente (referência e link abaixo), Simonavice et al. (2017) conduziu um programa de treino de força de 6 meses envolvendo grandes grupos musculares em mulheres (64 ± 7 anos de idade) sobreviventes de cancro da mama. A circunferência do braço foi avaliada para medir o aumento hipotético do linfedema. Não só não houve agravamento do linfedema nem a ocorrência de quaisquer outros eventos adversos, como o programa de treino de força resultou em aumento da força muscular, função física e qualidade de vida. Isso está de acordo com outros relatórios que mostram que os sobreviventes de cancro de mama podem e devem integrar programas de treino de força com intensidades moderada a alta para melhorar a força muscular, massa magra e densidade mineral óssea.

Na verdade, a contracção muscular é apontada como um mecanismo subjacente que serve como uma “bomba muscular” que, teoricamente, pode melhorar a drenagem do líquido linfático e potencialmente diminuir o risco de desenvolvimento de linfedema ou melhorar essa condição. Importante notar que as intensidades moderadas a altas implementadas de forma progressiva parecem oferecer mais benefícios.

Na The Strength Clinic acreditamos que todos podem treinar. TODOS DEVEM TREINAR independentemente da sua condição clínica! Naturalmente que o ajustamento da carga e exercícios é chave, e é por isso que os nossos treinadores são altamente qualificados e estão empenhados em garantir a DOSE CERTA para o seu caso!

Bons treinos!

Nuno Correia

Referências:

Simonavice, E., Kim, J.-S. & Panton, L., 2017. Effects of resistance exercise in women with or at risk for breast cancer-related lymphedema. Supportive Care in Cancer, 25(1), pp.9–15.

 

Recentemente, a International Society of Sports Nutrition publicou um “position stand” (ver referência abaixo) acerca da segurança e eficácia da suplementação com creatina no contexto do exercício, desporto e medicina.

A suplementação com creatina, um dos mais populares e estudados suplementos nutricionais, tem de facto mostrado ser eficaz em melhorar a performance atlética (sobretudo em exercício de alta intensidade) e induzir adaptações ao treino relevantes. O aumento consequente das reservas intra-musculares de creatina (e fosfocreatina) facilita a resíntese rápida de ATP (“moeda de troca” energética essencial para quase todas as reacções no nosso corpo) e dessa forma contribui para melhorar a performance porque aumenta a capacidade de produção de força, trabalho muscular, acelera a recuperação e parece contribuir para prevenir lesões.

Contudo, a suplementação com creatina parece ser altamente segura e eficaz em atletas, não-atletas (entusiastas do exercício físico) e ainda em várias populações clínicas. De facto, vários estudos (ver artigo da ISSN, referência abaixo) apontam para benefícios na suplementação com creatina nas mais variadas populações e contextos clínicos, tais como:

– Acelerar a reabilitação de lesões (porque atenua a atrofia muscular);

– Protecção de lesões neuronais (medulares e cerebrais);

– Atenuar as consequências debilitantes em pessoas com síndromas congénitos de deficiência de síntese de creatina;

– Atenuar a progressão de doenças neurodegenerativas (e.g. doença de Huntington, doença de Parkinson, doenças mitocondriais, esclerose lateral amiotrófica);

– Prevenir e/ou melhorar a bioenergética em pacientes com isquemia do miocárdio ou vítimas de acidente vascular cerebral;

– Melhorar indicadores metabólicos e funcionais associados ao envelhecinento;

– Possível benefício durante a gravidez para o óptimo crescimento, desenvolvimento e saúde do feto.

Em conclusão, a creatina parece de facto ser um suplemento nutricional seguro e com benefícios para as mais variadas populações e idades.

Nuno Correia

Referências:

Kreider, R.B. et al., 2017. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1), p.18.

PODERÁ A RESTRIÇÃO CALÓRICA OU O JEJUM INTERMITENTE CONTRIBUIR PARA EVITAR “DOENÇAS DA IDADE” E VIVER MAIS TEMPO? – PARTE 3

 

Veja aqui a parte 1 e a parte 2

Implicações e aplicações práticas da restrição calórica e jejum intermitente

E agora…será que a prática de restrição calórica (RC) ou jejum pode ter valor terapêutico em humanos?

Como foi referido anteriormente (parte 1), estudos randomizados e controlados em humanos a estudar os efeitos da RC e jejum em humanos são mais escassos. Não é fácil encontrar voluntários para se sujeitarem ao “desconforto” de ingerir menos comida.

Só um aparte…

Diga-se de passagem que mudar o que quer que seja na alimentação de alguém pode ser uma tarefa difícil! De facto, e baseado na minha experiência, as pessoas são em geral altamente resistentes em mudar seja o que for nos seus padrões alimentares e tendem a defendê-los com “unhas e dentes”! Elaboram os mais variados racionais (e muito sofisticados por vezes…como o típico “mas o meu avô tem 90 anos e sempre comeu isto ou aquilo”) para simplesmente justificar a ingestão deste ou aquele alimento que no fundo “apenas” gostam de ingerir. A nutrição é para alguns uma religião, acreditem…!

Voltando aos estudos com humanos…

A outra razão prática para o facto de haver escassez de estudos controlados e randomizados em humanos sobre os efeitos da RC ou jejum para estudar os seus efeitos na esperança de vida e a incidência de “doenças da idade” prende-se com o facto da esperança de vida humana ser longa.

Contudo, alguns estudos randomizados e controlados em humanos apontam para benefícios claros da prática de RC em determinadas populações. Seguidamente estão resumidos alguns desses estudos, tipo de intervenção e efeitos significativos verificados.

  • Wang et al. (2013)
    • Amostra: indivíduos obesos.
    • Intervenção: 5 dias de 30% de RC (low-fat/high-carb ou high-fat/low-carb) após período de dieta isocalórica.
    • Resultados significativos:
      • As dietas de RC desceram os níveis de insulina e leptina em jejum aumentando os níveis de ácidos gordos livres (o que indica mobilização das reservas de gordura);
      • Sensibilidade à insulina não melhorou significativamente (talvez devido ao curto período de 5 dias), contudo  a sinalização de insulina no músculo (em resposta à insulina) aumentou apenas dos sujeitos na dieta low-fat/high-carb. Atenção que este efeito na sinalização de insulina em resposta à dieta low-fat/high-carb (e não na dieta high-fat/low-carb) pode representar apenas uma resposta adaptativa transiente devido à maior carga glicémica da dieta. A duração curta do estudo não permite concluir uma melhoria sustentada na regulação de insulina.
  • Kitzman et al. (2016)
    • Amostra: indivíduos obesos e idosos (67±5 anos) com insuficiência cardíaca.
    • Intervenção: 20 semanas de RC (défice de 350-400kcal/dia) com ou sem exercício (1 hora de caminhada 3 dias por/semana).
    • Resultados significativos:
      • Tanto a RC como o exercício (separadamente) incrementaram a capacidade aeróbia (indicado pelo aumentos de VO2 pico), com efeitos ainda maiores se combinados;
      • Tanto a RC como o exercício (separadamente) melhoraram a composição corporal (perda de massa gorda) com efeitos ainda maiores se combinados;
      • A RC (mas não o exercício) reduziu o marcador inflamatório proteína C reactiva (CRP) e estava correlacionada com a perda de peso.
  • Snel et al. (2012)
    • Amostra: indivíduos obesos com diabetes mellitus tipo 2 (T2DM) e  insulino-dependentes.
    • Intervenção: 16 semanas de RC (450kcal/dia) com ou sem exercício (1 hora + 4 sessões de 30 minutos num cilcloergómetro por semana).
    • Resultados significativos:
      • Tanto a RC como o exercício melhoraram os níveis de glucose, insulina e hemoblogina glicosilada (HbA1c) em jejum;
      • O grupo RC + exercício perdeu mais gordura e perímetro na cintura em comparação ao grupo apenas em RC;
      • Tanto a RC como o exercício aumentaram a expressão dos receptores e sinalização de insulina (revelado por biópsia muscular) bem como a sensibilidade periférica à insulina.
  • Pedersen et al. (2015)
    • Amostra: indivíduos com sobrepeso ou obesos, não diabéticos com doença das artérias coronárias.
    • Intervenção: 12 semanas de RC (800-1000kcal/day) com ou sem exercício (treno aeróbio intervalado 3 dias/semana).
    • Resultados significativos:
      • Separadamente, a RC foi superior ao exercício na perda de peso corporal, massa gorda e perímetro na cintura, bem como glicémia em jejum, sensibilidade à insulina e tolerância à glucose. Contudo, a RC conduziu a melhores resultados quando combinado com o programa de exercício.
  • Razny et al. (2015)
    • Amostra: indivíduos obesos não-diabéticos
    • Intervenção: 3 meses de RC (1200-1500kcal/dia) com ou sem  1.8 g/dia de ácidos gordos omega-3 (num rácio de 5:1 de DHA/EPA).
    • Resultados significativos:
      • RC com ou sem suplementação com omega-3 resultou em decréscimo no peso corporal e massa gorda semelhantes;
      • RC teve um efeito positivo superior nos níveis de triglicéridos e insulina qaundo combinado com suplementação com omega-3;
      • RC + omega-3 (mas não apenas RC) melhorou indicadores de resistência à insulina (indíce HOMA).
  • Prehn et al. (2016)
    • Amostra: mulheres obesas em idade pós-menopausa.
    • Intervenção: 12 semanas de RC (<800kcal/dia) seguido de 4 semanas numa dieta isocalórica ou 16 semanas duma dieta isocalórica (control group). Recomendação de aumentar a actividade física por semana.
    • Resultados significativos:
      • RC (mas não a dieta isocalórica) resultou em scores melhores em testes de performance de memória;
      • RC (mas não a dieta isocalórica) resultou numa melhoria do controlo glicémico e dos níveis de HbA1c;
      • O incremento na densidade na matéria cinzenta cerebral induzido pela RC revelou-se negativamente correlacionado com os níveis de glucose.

Recomendações e conclusões

De facto, intervenções de RC ou jejum parecem realmente ter clara utilidade terapêutica na melhoria de parâmetros de saúde relacionados com obesidade, inflamação, resistência à insulina, stress oxidativo e função cardíaca. É importante notar que apenas reduzir a quantidade de comida ingerida pode não ser suficiente e porventura pouco recomendável. Uma intervenção simplista desse género e prolongada no tempo pode resultar em défices nutricionais e por essa via boicotar resultados positivos para a saúde. Por isso, é importante monitorizar e garantir níveis adequados de nutrientes através de suplementação e/ou na escolha de alimentos nutricionalmente densos. De realçar também os efeitos sinérgicos positivos que a RC parece ter quando combinada com exercício (Snel et al., 2012; de Luis et al., 2015; Kitzman et al., 2016), podendo ser prescritos concomitantemente. Neste sentido, uma intervenção de RC muito ligeira (e.g. défice de 10%) ou um períodos de jejum intermitente curtos (>12 horas e não precisa de ser todos os dias) combinado com exercício poderá ter efeitos muito positivos e com eventual maior probabilidade de adesão do que intervenções de RC ou jejum mais agressivas.

Naturalmente, que RC severa, prolongada no tempo e sem exercício (especialmente treino de força) pode induzir perda de massa magra que é altamente indesejável se o objectivo é melhorar a saúde. Mais uma vez, e como em quase tudo, a dose correcta é o segredo! Em certas populações como grávidas (ou mulheres a tentar engravidar) e indivíduos jovens em crescimento, intervenções prolongadas de RC deverão ser evitadas pois podem comprometer o desenvolvimento. Contudo, volto a realçar que o mais determinante não é ingerir “calorias” mas sim ingerir “nutrientes”! Em indivíduos mais velhos com sarcopenia a RC deverá ser porventura evitada, embora os factores mais determinantes para inverter um quadro de sarcopenia são treino de força e ingestão adequada de proteína diária (que deve ser mais mais elevada para indivíduos mais velhos, >2g/kg de peso corporal).

Em relação ao caso específico do jejum intermitente (nota: o enfoque deste artigo não é discutir a utilização do jejum intermitente como estratégia de perda de gordura e/ou manutenção ou ganhos de massa muscular no contexto desportivo, mas sim os seus potenciais benefícios para a saúde geral), apesar dos poucos estudos controlados e randomizados em humanos, este parece oferecer efeitos positivos semelhantes aos da RC constante e será porventura mais fácil de implementar (Donati et al., 2008; Marzetti et al., 2009; Alirezaei et al., 2010; Arum et al.; 2014; Godar et al., 2015). Episódios pontuais de jejum (e.g. não tomar pequeno-almoço uma a duas vezes por semana em dias que não se treina por exemplo) não só poderá ser uma estratégia de fácil implementação para controlo semanal total de calorias ingeridas, como permite um efeito hormético positivo que é mediado por alguns dos mecanismos atrás descritos. O conceito de hormese é definido como um efeito benéfico na saúde, na resistência ao stress, no crescimento ou na longevidade – resultante da exposição a uma dose “adequada” a um agente stressor.

Em resumo, a RC ou jejum (ou o exercício) é algo para o qual estamos evolutivamente desenhados para tolerar e que na dose correcta oferece-nos benefícios e maior resiliência. Ou seja, o stress pontual de não comer pode ser um “desconforto saudável”!

Até à próxima!

Nuno Correia

Bibliografia e Referências

Alirezaei, M. et al., 2010. Short-term fasting induces profound neuronal autophagy. Autophagy, 6(6), pp.702–710.

Arum, O. et al., 2014. Preservation of blood glucose homeostasis in slow-senescing somatotrophism-deficient mice subjected to intermittent fasting begun at middle or old age. Age, 36(3), pp.1263–1290.

de Luis, D.A. et al., 2015. Response of osteocalcin and insulin resistance after a hypocaloric diet in obese patients.  Eur Rev Med Pharmacol Sci. 19(12) pp.2174–2179.

Donati, A. et al., 2008. Effect of Aging and Anti-Aging Caloric Restriction on the Endocrine Regulation of Rat Liver Autophagy. Journal of Gerontology: BIOLOGICAL SIENCES, 63(6), pp.550–555.

Dröge W., 2009. Avoiding the First Cause of Death. New York, Bloomington. iUniverse, Inc.

Godar, R.J. et al., 2015. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy. 11(9), pp.1537-1560.

Kitzman, D.W. et al., 2016. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. Jama, 315(1), pp.36–46.

Lindeberg, S., 2010. Food and Western Disease: Health and Nutrition from an Evolutionary Perspective. Oxford, United Kingdom: Wiley-Blackwell.

Marzetti, E. et al., 2009. Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clinics in Geriatric Medicine, 25(4), pp.715–732.

Masoro.E. L., 2002. Caloric Restriction: A Key to Understanding and Modulating Aging. Texas, USA: ELSEVIER.

Pedersen, L.R. et al., 2015. A randomized trial comparing the effect of weight loss and exercise training on insulin sensitivity and glucose metabolism in coronary artery disease. Metabolism: Clinical and Experimental, 64(10), pp.1298–1307.

Prehn, K. et al., 2016. Caloric Restriction in Older Adults—Differential Effects of Weight Loss and Reduced Weight on Brain Structure and Function. Cerebral Cortex in press, pp.1–14.

Razny, U. et al., 2015. Effect of caloric restriction with or without n-3 polyunsaturated fatty acids on insulin sensitivity in obese subjects: A randomized placebo controlled trial. BBA Clinical, 4, pp.7–13.

Snel, M. et al., 2012. Effects of adding exercise to a 16-week very low-calorie diet in obese, insulin-dependent type 2 diabetes mellitus patients. Journal of Clinical Endocrinology and Metabolism, 97(7), pp.2512–2520.

Wang, C. C. L., 2013. Insulin Signaling in Obese Individuals During Caloric Restriction. Metabolism, 62(4), pp.595–603.

 

A maior parte das mulheres tem receio de levantar pesos como os homens porque pensam que vão ficar grandes e mais parecidas às figuras que vemos na foto à esquerda. É altura de clarificar essa questão e explicar não só porquê que isso é impossível (se não houver recurso a hormonas e/ou esteróides anabolizantes), mas também porquê que o treino de força é fundamental e um grande aliado para melhorar uma série de coisas, inclusivamente a composição corporal.

É bastante recorrente a utilização excessiva de protocolos de treino de baixa intensidade com as mulheres, dá-se demasiado ênfase ao cardio, à utilização de máquinas, às passadeiras, às bicicletas, a cargas demasiado leves, e muito pouco ênfase àquilo que vai promover o maior número de adaptações fisiológicas importantes para o aumento da capacidade funcional das mulheres – o treino de força. Se aquilo que pretende é dar vida aos seus anos e não anos à sua vida (para citar uma pessoa amiga), é bom que comece a olhar para o treino de força como uma das oportunidades anti-aging mais eficazes que existe à face da Terra. Não há sistema nenhum no nosso corpo que não possa ser influenciado pelo treino de força! Já lhe disse também que é mais barato que os cremes que anda a esfregar no corpo todos os dias?

Vou dividir este post em três partes. Primeiro, vamos destacar os mitos do treino de força para mulheres, que já foram abordados por Ebben & Jensen, em 1998, nesta publicação Strength training for women: debunking myths that block opportunity. Segundo, vamos destacar os seus principais beneficios e, terceiro, vamos explicar porquê que você não ficar como o Arnold Schwarzenegger (ou outro indivíduo musculado que tenha dificuldade em coçar as costas).

1. MITOS DO TREINO DE FORÇA PARA MULHERES

i) O treino de força vai causar que as mulheres fiquem grandes e pesadas.

A verdade é que o treino de força ajuda a reduzir a gordura corporal e a aumentar a massa magra. Estas mudanças poderão resultar num aumento ligeiro de peso, já que a massa magra é mais densa que a gordura (nota: se isto a perturba muito deite a balança fora e olhe mais para o espelho!). O treino de força vai resultar num aumento da força, em nenhuma mudança ou numa diminuição no perímetro das parte inferiores do corpo e num ligeiro aumento no perímetro das parte superiores do tronco. Apenas as mulheres com uma predisposição genética para a hipertrofia e que participam em treinos de grande volume e intensidade, é que poderão ver aumentos substanciais na circunferência dos seus membros.

ii) As mulheres devem usar métodos de treino diferentes dos homens.

As mulheres são normalmente encorajadas em utilizar as máquinas e a fazer muitas repetições de forma lenta, porque têm receio que a utilização de pesos livres, de resistências manuais, de movimentos explosivos ou de exercícios que utilizam o peso do corpo como resistência vão causar lesão. Na verdade, não existe nenhuma evidência a sugerir que as mulheres têm maior propensão que os homens de se lesionarem durante o treino de força. Os factores mais importantes para reduzir o risco de lesão assentam no dominio da técnica dos exercícios e na individualização do treino.

iii) As mulheres devem evitar treino de alta intensidade ou treino com cargas elevadas.

As mulheres são normalmente encorajadas a utilizar resistências limitadas no seu treino de força (i.e. halteres leves) mas o problema é que estas cargas demasiado leves estão substancialmente abaixo daquilo que é necessário para promover adaptações fisiológicas. As mulheres precisam de treinar a intensidades suficientemente elevadas para promover adaptações nos ossos, músculos, cartilagens, ligamentos e tendões. Quando a intensidade do exercício é muito baixa, ou seja, quando o estímulo é insuficiente, os beneficios fisiológicos são mínimos. Para maximizar os beneficios do treino de força, as mulheres devem treinar perto do seu máximo. Para as mulheres que já tiveram filhos, imagine que essa é a força que deve fazer para colher os maiores beneficios.

Resumindo, não há razão nenhuma para as mulheres treinarem de forma diferente dos homens no que diz respeito à intensidade do treino, se você pretende resultados diferentes, você precisa de deixar as aulas de aeróbica e os pesos cor de rosa para começar a levantar pesos a sério.

2. BENEFÍCIOS DO TREINO DE FORÇA PARA MULHERES

Além da melhoria na composição corporal (perda de massa gorda e aumento de massa magra), o treino de força vai ajudá-la a:

i) Aumentar a remodelação óssea, ou seja, você vai ficar com os ossos mais fortes e reduzir o risco de osteoporose (LINK, LINK, LINK). Tenha em atenção que os ossos mais fortes também podem ajudá-la a aumentar de peso, mas recorde-se que isto é bom, ossos fortes é sinal de saúde;

ii) Fortalecer o tecido conjuntivo, ou seja, você vai aumentar a estabilidade das suas articulações e reduzir o risco de lesão (LINK). Idem aspas para o ponto anterior no que diz respeito ao aumento de peso;

iii) Aumentar a força funcional para as atividades que gosta de praticar ou para as atividades do seu dia-a-dia (por exemplo: brincar com os seus filhos, carregar as compras do supermercado, subir escadas);

iv) Aumentar a auto-estima e confiança. Um corpo mais forte vai tornar a sua mente mais forte e imparável!;

v) Combater os efeitos da síndrome metabólica e de outras doenças crónicas comuns na nossa sociedade, tais como doenças cardiovasculares, diabetes tipo II, cancro, fibromialgia, artrite reumatóide e Alzheimer (LINK, LINK);

vi) Aumentar a longevidade de forma saudável, o treino de força vai potenciar a libertação de hormonas anabólicas que têm um papel importante na regeneração dos tecidos e no anti-aging (LINK).

Em resumo, além do treino de força ter o potencial de restabelecer a firmeza dos seus glúteos, pele e de definir aquelas partes do corpo que você pensa que só é possível através de cirurgia, de suplementos milagrosos e das técnicas mais avançadas de “tonificação muscular”, este também pode ajudá-la a viver a vida dos seus sonhos.

3. PORQUÊ QUE EU NÃO VOU FICAR COMO O ARNOLD SCHWARZENEGGER?

Arnold-Schwarzenegger-6-claves-del-exito

As mulheres têm características fisiológicas diferentes dos homens e é por este motivo que as mulheres têm maior dificuldade em ganhar músculo que os homens. Tal como disse no início deste artigo, se não houver recurso a hormonas e/ou a esteróides anabolizantes, é muito pouco provável que as mulheres fiquem parecidas aos homens.

i) Diferenças nas fibras musculares

Apesar das mulheres terem os diferentes tipos de fibras musculares que os homens têm (fibras de contração rápida e fibras de contração lenta), a quantidade de fibras musculares que elas têm e o tamanho das mesmas é mais pequeno que nos homens. Recordo que as fibras de contração lenta (tipo I) são usadas primariamente em esforços de endurance, enquanto que as fibras de contração rápida (tipo II) são usadas primariamente em movimentos rápidos e explosivos. No caso das mulheres, como cerca de 70-75% têm fibras tipo I, fica ainda mais difícil de mover cargas a altas velocidades. Em termos práticos, isto significa que o potencial para o aumento da área de secção transversal do músculo (i.e. tamanho do músculo) e para o aumento da taxa de produção de força é mais baixo nas mulheres que nos homens.

ii) Diferenças na força e potência

A média da força corporal total de uma mulher corresponde a cerca de 60% da média da força corporal total num homem. A média da força da parte superior do tronco das mulheres anda entre os 25 a 55%, quando comparada com os homens. Em relação à força da parte inferior do corpo, parece que é aqui que as mulheres são mais fortes em termos relativos, já que as médias apontam para um valor de 70-75% em relação aos homens. Portanto, não é de estranhar que a maioria das mulheres tenha maior dificuldade em levantar pesos com os braços e com a parte superior do corpo (exemplos: flexões e elevações) do que com as pernas e com a parte inferior do corpo (exemplos: agachamentos e lunges).

iii) Diferenças nas concentrações hormonais

A diferença mais óbvia nos mecanismos que determinam as adaptações ao treino dos homens e das mulheres é a hormona masculina, a testosterona. Tanto os homens como as mulheres produzem testosterona, a diferença é que as concentrações de testosterona nos homens são 10 a 20 vezes superiores aos níveis de testosterona das mulheres! Parece que as mulheres dependem mais da secreção pituitária da hormona do crescimento e de outros factores de crescimento para ajudar a mediar as mudanças no músculo, ossos e tecido conjuntivo. Na verdade, apesar das respostas ao treino de força não ocorrerem da mesma forma, tem sido reportado que as mulheres têm maiores concentrações biodisponíveis de hormona do crescimento no estado de repouso do que os homens. Felizmente, o treino de força e o treino de resistência metabólico (que fazemos no Fat Burn Boot Camp) fazem muito bem esse papel.

Em resumo, se você começar a levantar pesos de forma gradual e progressiva, você vai continuar a manter a sua feminidade, isto é, você pode estar descansada que não lhe vai crescer bigode, barba ou pêlos no peito. Você também não vai ficar mais larga nem cheia de músculos. Antes pelo contrário, você vai ficar mais magra, mais forte, mais jovem, mais inteligente e muito mais atraente ao sexo oposto. Mas não se iluda, para colher os maiores beneficios no treino, você precisa de fazer força a sério e de se mentalizar que esse sofrimento é importante para induzir as adaptações metabólicas que procura (exemplos: melhorar a composição corporal e minimizar o envelhecimento biológico) e que isso não acontece da noite para o dia. Além disso, você vai precisar de tempo, consistência e disciplina. Não existem pastilhas milagrosas.

Para terminar, gostava de deixar o seguinte aviso: antes de começar um programa de treino de força, tenha a consciência que é preciso  ter competência de movimento em primeiro lugar. Tal como você não iria começar a calcular derivadas na Matemática antes de saber somar e subtrair, também não faz sentido começar a levantar pesos livres ou barras olímpicas se você tiver restrições e/ou assimetrias no seu perfil de movimento base e se você não aprender as técnicas inerentes ao treino com cargas externas. A qualidade de movimento é a base, ou seja, este ingrediente terá que vir sempre em primeiro lugar.

Até breve e bons treinos!

Pedro Correia

Referências

Ciccolo Joseph T, Carr Lucas J, Krupel Katie L, Longval Jaime L. The Role of Resistance Training in the Prevention and Treatment of Chronic Disease. American Journal of Lifestyle Medicine July/August 2010 vol. 4 no. 4 293-308.

Cussler EC, Lohman TG, Going SB, Houtkooper LB, Metcalfe LL, Flint-Wagner HG, Harris RB, Teixeira PJ. Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc. 2003 Jan;35(1):10-7.

Ebben WP, Jensen RL. Strength training for women: debunking myths that block opportunity. Phys Sportsmed. 1998 May;26(5):86-97. doi: 10.3810/psm.1998.05.1020.

Hurley BF, Hanson ED, Sheaff AK. Strength training as a countermeasure to aging muscle and chronic disease. Sports Med. 2011 Apr 1;41(4):289-306. doi: 10.2165/11585920-000000000-00000.

Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339-61.

Nickols-Richardson SM, Miller LE, Wootten DF, Ramp WK, Herbert WG. Concentric and eccentric isokinetic resistance training similarly increases muscular strength, fat-free soft tissue mass, and specific bone mineral measurements in young women. Osteoporos Int. 2007 Jun;18(6):789-96. Epub 2007 Jan 31.

Stone MH. Implications for connective tissue and bone alterations resulting from resistance exercise training. PubMed PMID: 3057317.

Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000 Dec;15(12):2495-503.

Zatsiorsky V., Kraemer, W. Science and Practice of Strength Training 2nd Edition. Human Kinetics (2006).

PODERÁ A RESTRIÇÃO CALÓRICA OU O JEJUM INTERMITENTE CONTRIBUIR PARA EVITAR “DOENÇAS DA IDADE” E VIVER MAIS TEMPO? – PARTE 2

 

Veja aqui a parte 1

Que mecanismos subjazem aos efeitos da restrição calórica ou jejum intermitente na longevidade e “doenças da idade”? 

Mas afinal o que é “envelhecer”…e porquê…?

Envelhecer tem sido caracterizado por vários autores como um processo de deterioração progressiva das estruturas e funções moleculares, celulares e dos tecidos que está condicionada por factores genéticos e ambientais (Hu & Liu, 2014). Este processo multifactorial e complexo torna o indivíduo mais vulnerável à doença e conduz, no último momento, à morte. As principais determinantes (resultante de predisposição genética e factores ambientais) que caracterizam o processo de envelhecimento ao nível celular têm sido apontadas como sendo: danos causados por radicais livres; disfunção mitocondrial que resulta numa acumulação de espécies reactivas de oxigénio (ROS) e consequente stress oxidativo; decréscimo e ineficiência da autofagia (um processo conservado evolutivamente de reciclagem e “limpeza” essencial para a integridade celular – detalhes mais à frente); alterações nos processos de sinalização relacionados com hormonas como o factor de crescimento semelhante à insulina tipo 1 (IGF-1), insulina e hormona do crescimento; alteração no metabolismo do colesterol e da glucose; encurtamento dos telómeros (Testa et al., 2014).

Ora, parece que o processo de envelhecimento é de facto multifactorial. Provavelmente as várias teorias de envelhecimento (parte 1) estão correctas! Em geral, os processos moleculares vão-se tornando mais ineficientes, lentos e o sistema vai caminhando progessivamente para a entropia. Contudo, parece que conhecer o processo de autofagia (cujo declínio está associado ao envelhecimento) pode oferecer  uma “nova” perspectiva sobre o envelhecimento. Autofagia (ou “auto-digestão”) tem sido definido como um processo catabólico (normal e importante) que se caracteriza pela degradação nos lisossomas (organelo celular que funciona como “depósito de lixo”) de organelos danificados, proteínas “defeituosas” e patogénios intracelulares (Lavallard et al., 2012). A autofagia proporciona a degradação e reciclagem de macromoléculas, fornecendo não só novos nutrientes e energia durante restrição energética (durante restrição calórica ou jejum), mas também prevenindo a acumulação de resíduos celulares e agregados de proteínas no citoplasma. Logo, a autofagia constitui um processo protector e essencial para a homeostasia celular (Rubinsztein, Mariño & Kroemer, 2011) (nota: fiquem descansados os que pensam que a autofagia vai “comer os músculos todos” por ficarem umas horas sem comer. Isso não acontece!). De facto, vários autores têm apontado uma deficiente capacidade autofágica como um mediador importante de senescência celular e consequente ocorrência de “doenças ou características da idade” como: doenças cardiovasculares e neurodegenerativas; stress oxidativo; sistema imunitário débil; inflamação crónica; osteoporose; sarcopenia; diabetes; obesidade; cancro (Pallauf & Rimbach, 2013; Pyo, Yoo & Jung, 2013). Especificamente, revisões de estudos mecanicistas com animais têm indicado que a perda de função nos genes relacionados com a autofagia (autophagy-related genes – ATGs) resultaram na acumulação intracelular de proteínas e organelos defeituosos e consequentemente na aceleração do envelhecimento, enquanto que a promoção da actividade autofágica aumentou a esperança de vida (Yen & Klionsky 2008).

Nota: Os mecanismos de autofagia parecem realmente estar na ordem do dia com atribuição do Prémio Nobel 2016 da Medicina ao biólogo japonês Yoshinori Ohsumi. As suas descobertas nos mecanismos de autofagia apontam no sentido de que esse processo de limpeza e reciclagem celulares é essencial para prevenir doenças neurodegenerativas e outras. Os interessados poderão consultar o seguinte link: https://www.theguardian.com/science/live/2016/oct/03/nobel-prize-in-medicine-2016-to-be-announced-live.

De um modo geral, e desde os primeiros estudos em ratos pelo Dr. Clive McCay em 1935, que a restrição calórica tem sido extensivamente revista e reconhecida como uma estratégia anti-envelhecimento “potente”! Intervenções em vários tipos de espécies animais (desde invertebrados a mamíferos de maior porte como primatas) têm demonstrado que a restrição calórica (sem subnutrição) não só aumenta a esperança de vida (média e máxima), como atrasa o início das chamadas “doenças da idade” (Martin, Mattson & Maudsley, 2006; Xiang & He, 2011; Lee & Min, 2013; Kitada & Koya, 2013b; Szafranski & Mekhail, 2014; Testa et al., 2014). O regime de jejum intermitente (nada mais do que uma estratégia de restrição calórica como foi descrito na parte 1 deste artigo) parece oferecer o mesmo tipo de benefícios (Martin, Mattson, & Maudsley, 2006; Robertson & Mitchell 2013).

Ora, os mecanismos pelos quais a restrição calórica ou jejum induzem benefícios para a saúde parecem estar (em grande medida) relacionados com esta relação antagónica entre sinalização de insulina e autofagia. Está fácil de perceber, sendo a autofagia um processo catabólico (essencial, normal e protector, volto a salientar) e a activação das vias relacionadas com a sinalização a insulina um processo anabólico (igualmente importante e essencial na síntese proteica, a insulina não é a “má da fita”), quando uma das vias está activada a outra terá que estar inibida. Em termos práticos, o jejum activa a “maquinaria” da autofagia e ingerir uma refeição (sobretudo contendo proteína e/ou hidratos de carbono) activa a “maquinaria” da sinalização de insulina. O que parece ser essencial é de facto que haja períodos que permita o processo de eliminação e reciclagem proporcionado pela autofagia, e para isso acontecer é preciso não comer durante algum tempo (pelo menos 10-12 horas). Se não houver “espaço” para este processo (devido à ingestão constante de comida), isto poderá conduzir a um estado de sinalização de insulina “aberrante”, que poderá conduzir a muitas doenças normalmente associadas com um metabolismo deficiente da glucose e da insulina e que coincidem com as chamadas “doenças da idade”.

(Aviso: os menos “nerds” devem saltar o parágrafo seguinte)

Resumidamente, alguns dos mecanismos identificados em estudos com animais e que parecem estar subjacentes aos benefícios para a saúde induzidos pela restrição calórica ou jejum intermitente através regulação da sinalização das vias da autofagia e da insulina são: 1) Inibição da sinalização da via insulina/IGF-1 (devido à diminuição de aminoácidos e glucose circulantes) e das suas vias alvo protein kinase B (PKB)/mammalian target of rapamycin (mTOR); 2) Activação da via da sirtuína 1 (SIRT1), devido ao aumento no rácio de NAD+/NADH, e cujas vias alvo incluem a activação da adenosine monophosphate protein kinase (AMPK), factores de transcrição forkhead box O (FOXO), proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) (um factor de biogénese mitocontrial), e inibição do factor de transcrição pró-inflamatório NFkB; 3) Activação da via da AMPK, devido ao aumento intracelular do rácio AMP/ATP, que por sua vez induz uma regulação positiva dos factores de transcrição FOXO e PGC-1α e inibição da via PKB/mTOR. (Martin, Mattson & Maudsley, 2006; Han & Ren 2010; Rubinsztein, Mariño & Kroemer, 2011; Yen & Klionsky, 2008; Xiang & He, 2011; Pallauf, & Rimbach, 2013; Pyo, Yoo, & Jung, 2013; Hu & Liu, 2014; Szafranski & Mekhail, 2014; Amigo & Kowaltowski, 2014; Testa, G. et al., 2014; Madeo et al., 2015).

Em humanos, apesar da menor abundância de estudos controlados e randomizados (pelos motivos referidos na parte 1 deste artigo), várias revisões de estudos de intervenção e observacionais (Yen & Klionsky, 2008; Marzetti, E. et al., 2009; Han & Ren 2010; Robertson & Mitchell, 2013; Testa et al., 2013; Madeo et al., 2015; Fan et al., 2016) indicam que os putativos benefícios para a saúde induzidos pela restrição calórica ou jejum intermitente têm por base os mesmos mecanismos relacionados com a sinalização das vias da insulina e regulação da autofagia. Alguns benefícios apontados incluem: maior longevidade saudável; melhor perfil lipídico; pressão arterial controlada; optimização da função diastólica e sistólica; melhor controlo homeostático da insulina e glucose; melhor sensibilidade à insulina e glucose; menor incidência de doenças neurodegenerativas; menor adiposidade; melhor biogénese mitocondrial no músculo esquelético; maior capacidade antioxidante; menores níveis de ROS e stress oxidativo.

16111532_1505247206155574_818828693_n

 * Poderá a Restrição calórica/ Jejum intermitente (CR/IF) atenuar a ocorrência de doenças da idade através da regulação da sinalização “aberrante” de insulina e autofagia?

Em conclusão, o efeito da restrição calórica ou jejum intermitente na regulação da sinalização de insulina e da autofagia parece emergir como um eixo regulatório central que merece atenção (pelo menos da minha parte).

Na terceira parte deste artigo abordarei então quais poderão ser implicações e aplicações práticas de restrição calórica ou jejum. Devemos todos fazer restrição calórica? De forma permanente e quanto? Em que fase da vida? Em que condições de saúde? Será que é na “intermitência” que estão os melhores ganhos?

Fiquem por aí!

Nuno Correia

Bibliografia e Referências 

Amigo, I. & Kowaltowski, A.J., 2014. Dietary restriction in cerebral bioenergetics and redox state. Redox Biology, 2(1), pp.293–304.

Dröge W., 2009. Avoiding the First Cause of Death. New York, Bloomington. iUniverse, Inc.

Fan, J. et al., 2016. Autophagy as a Potential Target for Sarcopenia. Journal of Cellular Physiology, 231(7), pp.1450–1459. [Epub 2015 Dec 10].

Han, X. & Ren, J., 2010. Caloric restriction and heart function: is there a sensible link? Acta pharmacologica Sinica, 31(9), pp.1111–1117.

Hu, F. & Liu, F., 2014. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations. Protein & cell, 5(1), pp.21–35.

Lavallard, V.J. et al., 2012. Autophagy, signaling and obesity. Pharmacological Research, 66(6), pp.513–525.

Lee, S.-H. & Min, K.-J., 2013. Caloric restriction and its mimetics. BMB reports, 46(4), pp.181–7.

Lee, S.-H. & Min, K.-J., 2013. Caloric restriction and its mimetics. BMB reports, 46(4), pp.181–7.

Lindeberg, S., 2010. Food and Western Disease: Health and Nutrition from an Evolutionary Perspective. Oxford, United Kingdom: Wiley-Blackwell.

Madeo, F. et al., 2015. Essential role for autophagy in life span extension. Journal of Clinical Investigation, 125(1), pp.85–93.

Martin, B., Mattson, M.P. & Maudsley, S., 2006. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing research reviews, 5(3), pp.332–53.

Masoro.E. L., 2002. Caloric Restriction: A Key to Understanding and Modulating Aging. Texas, USA: ELSEVIER.

Pyo, J.O., Yoo, S.M. & Jung, Y.K., 2013. The interplay between autophagy and aging. Diabetes and Metabolism Journal, 37(5), pp.333–339.

Robertson, L.T. & Mitchell, J.R., 2013. Benefits of short-term dietary restriction in mammals. Experimental gerontology, 48(10), pp.1043–8.

Rubinsztein, D.C., Mariño, G. & Kroemer, G., 2011. Autophagy and aging. Cell, 146(5), pp.682–695.

Rubinsztein, D.C., Mariño, G. & Kroemer, G., 2011. Autophagy and aging. Cell, 146(5), pp.682–695.

Szafranski, K. & Mekhail, K., 2014. The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus, 5(1), pp.56–65.

Testa, G. et al., 2014. Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Current pharmaceutical design, 20(18), pp.2950–77.

Xiang, L. & He, G., 2011. Caloric restriction and antiaging effects. Annals of Nutrition and Metabolism, 58(1), pp.42–48.

Yen, W.-L. & Klionsky, D.J., 2008. How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda, Md.), 23(70), pp.248–262.

 

Existem várias linhas de evidência a sugerir que a disfunção mitocondrial está associada à sarcopenia (perda de força e massa muscular no envelhecimento). Em cada célula do nosso corpo existem centenas ou milhares de mitocôndrias, elas existem em maior quantidade nos órgãos e tecidos mais ativos (músculos, coração e cérebro). A razão pela qual envelhecemos rapidamente deriva das constantes lesões e insultos que causamos às nossas mitocôndrias. O stress crónico, a falta de sono, as más escolhas alimentares, a falta de exercício físico (em particular treino de força), o álcool, o tabaco, a exposição a poluentes são apenas alguns exemplos de como é que o seu estilo de vida pode influenciar o funcionamento destas pequenas estruturas.

As mitocôndrias são os organelos responsáveis pela produção de energia no nosso corpo, se você está sempre cansado(a), se tem perdas de memória, se costuma ter dores musculares e se é daquelas pessoas que toma medicamentos para o colesterol, hipertensão, diabetes e outras doenças crónicas é muito provável que as suas mitocôndrias não estejam em forma. Mas vamos ao estudo.

Este estudo pode ser considerado um estudo revolucionário pelo seu impacto que tem sobre os benefícios do treino de força em pessoas idosas. Este estudo foi publicado em 2007 e foi o primeiro estudo realizado em humanos (tanto quanto sei) a demonstrar que o treino de força tem a capacidade de reverter o processo de envelhecimento a nível molecular. Se fosse um medicamento ou um suplemento alimentar a demonstrar estes efeitos, eu penso que já toda a gente sabia.

Amostra

Para a realização do estudo os investigadores recrutaram 25 pessoas idosas saudáveis (idade média de 68 anos), que já faziam algum tipo de exercício físico (caminhadas, jardinagem, ténis, golfe, ciclismo) três a quatro vezes por semana e 26 adultos jovens (idade média de 24 anos) relativamente inativos, alguns deles participantes em atividades recreativas.

Os autores seleccionaram idosos relativamente ativos e adultos jovens relativamente sedentários (em relação a outros da mesma idade), de tal forma a estudar o efeito do envelhecimento em idosos saudáveis per si e não apenas o efeito da inatividade física. Todos os indivíduos mais velhos passaram por um processo de triagem minucioso antes de serem admitidos no estudo para garantir a ausência de doenças que poderiam alterar a função mitocondrial.

Todos os sujeitos completaram uma avaliação médica antes de participarem no estudo. Os critérios de exclusão foram: evidência de doença cardíaca (pela história e teste de esforço); hipertensão; doença pulmonar obstrutiva crónica; diabetes mellitus; insuficiência renal; lesão ortopédica e tabagismo. Nenhum dos sujeitos tinha participado anteriormente num programa estruturado de treino de resistência muscular.

Programa de Treino

Os indivíduos realizaram exercícios de resistência com supervisão em dois dias não consecutivos da semana (segunda-feira/quinta-feira ou terça-feira/sexta-feira) durante 26 semanas (seis meses). Os indivíduos realizaram doze exercícios diferentes incluindo chest press, leg press, leg extension, leg flexion, shoulder press, lat pull-down, seated row, calf raises, crunches, back extensions, bicep curl e extensão de tricípite.

Os sujeitos começaram inicialmente com uma série de 50% de 1 repetição máxima (1RM), e aumentaram gradualmente para três séries a 80% do seu 1RM durante o período de intervenção. Os sujeitos testaram o seu 1RM para todos os exercícios a cada duas semanas, e as cargas de treino foram sendo ajustadas de forma a manter 80% do seu 1RM.

Biópsia Muscular

Todos os indivíduos mais jovens (N=26) foram submetidos a uma biópsia muscular (incisão e extração de uma parte pequena de músculo) retirada do vasto lateral (músculo da coxa) antes e depois do estudo de 26 semanas. Os indivíduos idosos (=25) fizeram biópsias antes do estudo e depois (N=14) do estudo. O RNA (ácido ribonucleico) foi extraído a partir do músculo para análise para determinar os genes que se expressavam de forma diferenciada com a idade.

Resultados

Os autores do estudo identificaram 596 genes expressos de forma diferenciada entre os indivíduos jovens e idosos. Destes 596 genes, os investigadores identificaram 179 associados com a idade e exercício que mostraram uma reversão em seis meses de treino de resistência muscular. Isto significa, literalmente, que o treino de resistência muscular não serviu apenas para retardar, mas também para reverter o processo de envelhecimento ao nível genético. As expressões genéticas dos indivíduos idosos mostraram características semelhantes às do grupo mais jovem. Os investigadores também observaram que a disfunção mitocondrial (que afloramos no início do post e que está muito relacionada com a inatividade física) começou a reverter após seis meses de treino.

No que diz respeito à força muscular, aconteceu aquilo que se esperava, ou seja, quem fez força ficou mais forte. A força isométrica das pessoas idosas era inicialmente de 59% menor do que os adultos jovens mas depois de seis meses de treino, as pessoas idosas melhoraram e ficaram 38% mais fracas que os adultos jovens.

Abaixo poderá ver destacado a vermelho as conclusões dos autores do estudo:

Foto Estudo Força

Conclusões

Hoje em dia todas as pessoas sabem que o exercício físico está associado a uma diminuição da morbilidade e da mortalidade em humanos, isto não é segredo para ninguém. O que as pessoas provavelmente não sabem é que existem formas de exercício físico que podem ser mais benéficas que outras para aumentar a força e a longevidade. Este estudo demonstrou, pela primeira vez, que o treino de resistência muscular pode reverter os aspectos relacionados com o envelhecimento ao nível do gene. Sim, você está a ler bem, reverter o envelhecimento a nível molecular!

O facto das pessoas mais velhas terem ficado mais fortes para mim não foi surpresa nenhuma, e não será também para os profissionais que têm o privilégio de trabalhar nesta área. Não é raro termos pessoas mais velhas a começarem a sua prática com pesos mínimos e, em pouco tempo, evoluírem para cargas iguais ou superiores àquelas de jovens de 20 e poucos anos. É tudo uma questão de dedicação e de método.

Durante anos e anos os treinadores pessoais e os profissionais de fitness têm-se fartado de referir aos seus clientes / atletas a importância do exercício físico na melhoria da saúde. Esta mensagem, na minha opinião, não tem sido bem compreendida pelas pessoas em geral, na medida em que as mesmas ainda não compreenderam que o movimento e o exercício físico é tão importante para nutrir o corpo como os alimentos que comem todos os dias.

Em suma, este estudo fascinante está basicamente a dizer-nos que todos nós temos hipótese de aumentar a longevidade (mesmo quando somos mais velhos) e que o elixir da juventude até é algo conhecido e até é algo que está relativamente acessível a toda a gente – o treino de força. O único problema é este: para estes benefícios acontecerem as pessoas têm que estar dispostas a treinar com esforço de forma consistente, um fenómeno bastante raro na nossa sociedade moderada, já que a maioria está mais disposta a tomar uma pastilha milagrosa (e acreditar na fé) que em fazer algo por elas. Portanto, serão apenas os indíviduos focados e aqueles que entendem e aplicam estes princípios no treino (e na vida) que vão acabar por ter mais benefícios – não dependerá da sorte, certamente!

Até breve!

Pedro Correia

Referências

Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A (2007) Resistance Exercise Reverses Aging in Human Skeletal Muscle. PLoSONE 2(5): e465. doi:10.1371/journal.pone.0000465

 

Se o seu avô / avó é uma pessoa normal, é muito provável que já tenha ido ao médico muitas vezes, que tome vários medicamentos, que não oiça muito bem e que já não tenha a mesma capacidade de locomoção e de raciocínio que tinha há alguns anos atrás.

Os médicos dizem que isto é “normal” e que é típico do avançar da idade, eles até receitam medicamentos com a crença que isso vai melhorar a qualidade de vida dessas pessoas. Não digo que isso não seja necessário para alguns casos, mas também não acredito que isso seja a melhor abordagem para melhorar a saúde da maioria das pessoas que ainda respira na terceira idade.

Há mais de dois anos atrás saiu uma notícia no Público (link aqui), que dizia que as portuguesas viviam cada vez mais tempo, mas com menos saúde. A notícia dizia ainda: “as portuguesas têm uma esperança de vida que é das melhores do mundo, mas desfrutam de muito menos anos saudáveis do que as mulheres dos países melhor classificados na Europa.”

Ao ler a notícia, a primeira coisa que pensei foi: nós temos que ser mesmo muito estúpidos, porque mesmo com os avanços diários da medicina e do conhecimento científico, nós ainda não fomos capazes de perceber quais são as causas que estão por detrás desta longevidade DOENTE. O problema não está no avançar dos anos, o problema está nos conselhos de treta que ouvimos todos os dias sobre nutrição e exercício físico, especialmente nos hospitais. Se as campanhas de prevenção e os folhetos informativos que lá estão fossem realmente suportados pela evidência científica, provavelmente não haveriam tantas pessoas a padecer com dores crónicas, com diabetes, com doença cardíaca, com osteoporose, com sarcopenia, com doenças auto-imunes e com cancro.

Toda a gente sabe que o exercício físico é determinante para o funcionamento do nosso corpo (o nosso cérebro e corpo não se desenvolveu com o rabo sentado na secretária) e, que, ao contrário dos medicamentos, este tem um impacto positivo e auto-regulador nos vários sistemas do corpo humano. Fazer exercício físico é mais eficaz para a saúde que qualquer medicamento patenteado.

“Mas eu ando uma hora a pé todos os dias”

Repare numa coisa, andar a pé é o mínimo que pode fazer para manter o seu corpo a funcionar. Se você me diz que é isso ou ficar recostado no sofá a comer gelados, então é melhor andar a pé. Mas se você me diz que pretende viver uma vida saudável até morrer, ser mais independente, diminuir o risco de quedas, aumentar a auto-confiança, dormir melhor, recuperar mais rapidamente de uma lesão e não fazer parte das estatísticas que vimos acima, aquilo que recomendo é que comece a pensar seriamente a levantar pesos e a fazer treino de força. Andar a pé não lhe vai dar, nem por sombras, os mesmos benefícios do treino de força.

Outra coisa, se você é daquelas pessoas com doença cardiovascular, o seu médico (ou algum Dr. do Google) provavelmente disse-lhe que era importante andar a pé para melhorar a sua saúde cardiovascular. O problema é que isto não lhe vai ajudar muito, a falta de capacidade aeróbia não é um factor de risco para a doença cardíaca, o sedentarismo é que é! – isto significa que você pode ter uma capacidade aeróbia fora do vulgar e uma doença de coração na mesma. Na verdade, de acordo com este estudo publicado em 2006 no jornal da American Heart Association (LINK), com este publicado em 2008 no European Heart Journal (LINK) e com este publicado em 2012 na Mayo Clinic Proceedings (LINK), os maratonistas são aqueles que parecem ter maior risco de desenvolver doenças cardiovasculares.

Mais, de acordo com o cardiologista Henry A. Solomon no livro The Exercise Myth, a saúde cardiovascular refere-se à ausência de doença do coração e dos vasos sanguíneos, e não à capacidade de um indivíduo fazer uma certa quantidade de trabalho físico. Segundo o mesmo médico, a sua saúde geral cardíaca é determinada pela condição de várias estruturas do coração, incluindo o músculo cardíaco, as válvulas, os tecidos cardíacos especiais que transportam os impulsos eléctricos e as artérias coronárias. Ou seja, não espere que o exercício compense ou “limpe” aquilo que pratica na sua alimentação diária.

Esta mania que o cardio é que é bom surgiu no fim dos anos 60/início dos anos 70 por intermédio do Dr. Kenneth Cooper (o criador do teste de Cooper), foi a partir daqui que toda a gente começou a olhar para o VO2 máximo como o santo graal do condicionamento físico. Mas isto não é bem assim, você precisa de treinar de acordo com as suas necessidades e não de acordo com a conveniência da maioria dos ginásios, isto é, passar horas na passadeira / elíptica / bicicleta, percorrer todas as máquinas que lá estão e ignorar o treino com pesos.

Porquê o treino de força?

Porque a força / potência são as capacidades que mais perdemos ao longo da vida e porque vários estudos têm demonstrado que a perda de força e massa muscular estão associadas com um aumento da mortalidade (LINK, LINK, LINK). Felizmente, levantar pesos é o melhor estímulo para contrariar esta tendência e para aumentar a nossa capacidade funcional. Em condições normais, os picos de força acontecem entre os 20 e 30 anos, depois desta idade os índices de força mantêm-se relativamente estáveis ou diminuem ligeiramente durante os próximos 20 anos, se bem que tudo depende daquilo que fazemos no treino.

É na sexta década de vida que as diminuições na força são bastante acentuadas. De acordo com alguns estudos longitudinais, os declínios de força muscular andam à volta dos 15% entre os 60-70 anos de idade e de 30% após os 70 anos. As razões têm a ver principalmente com a perda de massa muscular, com a perda mais acentuada das fibras musculares de contração rápida, com a diminuição da função endócrina, com a perda de mobilidade / elasticidade dos tecidos e com a desidratação celular. Todas estas coisas podem ser minimizadas com um programa de treino adequado.

Sim, é possível começar treinar a força a qualquer idade, eu conheço pessoas que começaram a treinar com 50, 60 e com mais de 80 anos, é tudo uma questão de mentalidade e de força de vontade.

Quer isto dizer que eu devo meter os meus avós a levantar pesos e/ou barras olímpicas sem critério? Claro que não, isso não seria muito inteligente. Para chegar a esse ponto é preciso percorrer um caminho, é preciso avaliar a situação específica de cada pessoa, é preciso criar uma base de movimento sólida, e para isso o melhor que tem a fazer é consultar um profissional do exercício ou preparador físico que percebe de movimento e de treino de força.

Você até pode ouvir a opinião do seu médico (e até acho bem que o faça se fica mais seguro assim), mas lembre-se do seguinte: 1) o seu médico não é especialista em movimento; 2) o seu médico não tem experiência a treinar pessoas; 3) o seu médico, provavelmente, nem sabe levantar pesos. Ou seja, da mesma forma que você não iria pedir conselhos sobre técnicas de cirurgia a treinadores, você também não deveria pedir conselhos sobre metodologias de treino e formas de exercício físico a cirurgiões.

Ah e antes que me digam que eu estou a ser fundamentalista e a sugerir que não se treinem outras capacidades físicas (como a estabilidade, a mobilidade, a resistência, a velocidade, a agilidade, a coordenação motora, a potência), permitam-me terminar com a seguinte observação: o programa de treino de qualquer ser humano no planeta, em condições ideais, deverá ser sempre aquele que induza as adaptações necessárias para os objetivos pessoais.

A palavra chave aqui é adaptação, os mais adaptados estarão melhor preparados para enfrentar qualquer situação. Cada um é livre de fazer aquilo que quiser na sua vida, cada um de nós tem a capacidade de decidir o que fazer todos os dias, para mim o objetivo é aumentar a longevidade e viver até os últimos dias da minha vida a sentir-me forte e espetacular. Qual é o seu?

Até breve!

Pedro Correia

Referências

Möhlenkamp S, Lehmann N, Breuckmann F, Bröcker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jöckel KH, Erbel R; Marathon Study Investigators; Heinz Nixdorf Recall Study Investigators. Running: the risk of coronary events : Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008 Aug;29(15):1903-10. doi: 10.1093/eurheartj/ehn163. Epub 2008 Apr 21.

Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS, Lewandrowski KB, Siegel AJ, Marshall JE, Douglas PS, Lawlor D, Picard MH, Wood MJ. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006 Nov 28;114(22):2325-33. Epub 2006 Nov 13.

O’Keefe JH, Patil HR, Lavie CJ, Magalski A, Vogel RA, McCullough PA. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc. 2012 Jun;87(6):587-95. doi: 10.1016/j.mayocp.2012.04.005.

Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, Guralnik JM. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci. 2000 Mar;55(3):M168-73.

Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjöström M, Blair SN. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008 Jul 1;337:a439. doi: 10.1136/bmj.a439.

Takata Y, Ansai T, Soh I, Akifusa S, Sonoki K, Fujisawa K, Awano S, Kagiyama S, Hamasaki T, Nakamichi I, Yoshida A, Takehara T. Association between body mass index and mortality in an 80-year-old population. J Am Geriatr Soc. 2007 Jun;55(6):913-7.

Zatsiorsky V., Kraemer, W. Science and Practice of Strength Training 2nd Edition. Human Kinetics (2006).

PODERÁ A RESTRIÇÃO CALÓRICA OU O JEJUM INTERMITENTE CONTRIBUIR PARA EVITAR “DOENÇAS DA IDADE” E VIVER MAIS TEMPO? – PARTE 1

 

Introdução

Neste artigo debruçar-me-ei sobre a possibilidade da restrição calórica ou jejum intermitente constituírem estratégias terapêuticas nutricionais eficazes para prevenir, amenizar ou mesmo eliminar algumas “doenças ditas da idade” e dessa forma contribuir para viver melhor e mais tempo. É importante referir que a maior parte dos estudos sobre os efeitos de restrição calórica ou jejum intermitente (ou restrição calórica intermitente) na esperança de vida são de carácter mecanicista e conduzidos em modelos animais e/ou in-vitro. É compreensível a existência duma menor abundância de estudos de intervenção em humanos nesta área. Se pensarmos um pouco, não é fácil conduzir estudos em humanos sujeitos a restrição calórica para estudar os seus efeitos na esperança de vida e na incidência de “doenças da idade”. Não só não será fácil recrutar pessoas para voluntariamente incorrerem num período de restrição calórica, tal como não é prático estudar em humanos (de forma randomizada e controlada) os efeitos da restrição calórica ou jejum na esperança de vida, porque simplesmente estes “vivem muito tempo”. Por forma a obter resultados em tempo útil torna-se essencial conduzir estudos em espécies com esperança de vida mais curta. Contudo, estudos observacionais e alguns estudos de intervenção em humanos (discutidos mais à frente) parecem confirmar os mesmos efeitos benéficos para a saúde e pelos mesmos mecanismos moleculares daqueles observados em animais.

De referir ainda que, no contexto experimental, restrição calórica é definida como “redução da ingestão de alimento sem subnutrição”. Ou seja, normalmente intervenções nutricionais que implicam uma redução de 10-40% das necessidades calóricas diárias em que apenas as calorias e não os nutrientes são restringidos (na maior parte dos estudos controlados este aspecto é assegurado com suplementação de vitaminas e minerais) (Kitada & Koya, 2013b; Robertson & Mitchell, 2013). Esta noção é importante! Défice calórico não implica défice de nutrientes e excesso calórico não implica que as necessidades de nutrientes estão colmatadas. Jejum intermitente não será mais do que um método alternativo de restrição calórica em que a ingestão de comida é restringida durante um determinado período de tempo (normalmente entre 16 a 24 horas) seguido de um período de ingestão sem restrição, e que tem sido apontado como produzindo efeitos benéficos na saúde similares a protocolos de restrição calórica mais constante (Martin, Mattson, & Maudsley, 2006; Robertson & Mitchell 2013).

Parte 1

Deveremos aceitar ser “doentes” só porque envelhecemos?

É recorrente ouvir-se dizer que a doença é algo que “vem com o pacote da idade”. De facto envelhecer é uma chatice! A percepção geral de um declínio progressivo de todas as nossas funcionalidades à medida que envelhecemos não é, infelizmente, uma ilusão. Existem várias teorias sobre o envelhecimento. Embora seja um tema certamente muito interessante, uma descrição detalhada das várias teorias do envelhecimento não é o objectivo deste artigo. Duma forma geral, são apontados como principais os seguintes mecanismos subjacentes ao processo de envelhecimento:

  • A teoria da Metilação do DNA, redução do comprimento dos Telómeros e o “limite de Hayflick”. O “limite de Hayflick” (fenómeno descoberto por Leonard Hayflick) determina que as células humanas têm um número limite de replicação, depois do qual elas tornam-se senescentes. Os telómeros (i.e. uma espécie de “capacetes” protectores no final de cada cromossoma) tornam-se progressivamente mais curtos a cada divisão celular (Shay & Wright 2000). Ora, a metilação do DNA (um processo essencial e reparador que consiste na adição de grupos de metil ao DNA e que pode ser promovida pela abundância de doadores de metil provenientes da dieta por exemplo) é apontada como sendo protectora do comprimento dos telómeros e dessa forma adiar a morte celular e o envelhecimento. Por exemplo, em modelos animais, a hipometilação da enzima telomerase reverse trancriptase conduziu à preservação do comprimento dos telómeros dos leucócitos (Zhang et al. 2003; 2014). Neste exemplo, é plausível inferir que adiar a senescência dos leucócitos (através de metilação e consequente conservação do comprimento dos telómeros) pode contribuir para uma maior robustez do sistema imunitário e dessa forma influenciar positivamente a longevidade.
  • A teoria do envelhecimento associada à Inflamação crónica. Esta teoria sugere que inflamação crónica não resolvida induz o organismo humano a não alocar recursos para o funcionamento de outras funções normais (pois estão permanentemente alocados para a inflamação que não se resolve) e dessa forma conduz a um envelhecimento precoce de vários orgãos e tecidos, e a instalação precoce de “doenças da idade”.
  • A teoria do stress oxidativo e dos radicais livres. Esta teoria, originalmente proposta pelo Dr. Denham Harman em 1956, é baseada na premissa de que o processo de envelhecimento é mediado por danos causados por radicais livres. Teoricamente, reduzindo a acumulação de radicais livres (e.g. espécies reactivas de oxigénio) e ao mesmo tempo aumentando a capacidade antioxidante do organismo (aumentando glutationa e enzimas antioxidantes como superóxido dismutase e catalase), poder-se-á prevenir danos aos tecidos (desacelerando o processo de envelhecimento) e prevenir a ocorrência de “doenças da idade”, e consequentemente contribuir para aumentar a longevidade funcional (Harman, 1988; 2006).

Muito bem, envelhecer é inevitável! Já sabemos disso. Contudo, se pensarmos um pouco, todos os mecanismos apontados têm uma raíz ambiental, ou seja, podemos até certo ponto controlá-los através de decisões que tomamos todos os dias. Nomeadamente decisões sobre o que comemos e como nos mexemos. E isto são boas notícias! Está de facto nas nossas mãos desacelerar o processo de senescência e prevenir a instalação das chamadas “doenças da idade”. Note-se que se para nós (mundo ocidental) é estatisticamente “normal” envelhecer com diabetes, hipertensão, cancro, demência, sarcopenia, osteoporose, doenças cardiovasculares, resistência à insulina, obesidade e inflamação crónica (porque a população estudada tem um estilo de vida que conduz à doença), noutras populações contemporâneas (não ocidentalizadas) essas doenças são raras ou mesmo inexistentes. Neste âmbito, convido o leitor a consultar aquele que considero um dos melhores livros que conheço sobre nutrição e estilo de vida, e a sua relação com a incidência das chamadas doenças “ocidentais”, Food and Western Disease: Health and Nutrition from an Evolutionary Perspective de Staffan Lindeberg. De facto, se queremos apontar para o nosso máximo potencial de saúde e de vida, não devemos olhar apenas para o que é “normal” numa determinada população, porque essa pode ser uma população doente. Devemos sim procurar o que é “biologicamente normal” para um ser humano! Uma espécie que está desenhada (em termos evolutivos) para lidar com uma série de estímulos ambientais que incluem certos níveis de actividade física, nutrição, exposição solar e sono. E se por um lado envelhecer é normal, não parece ser “biologicamente normal” envelhecer com as doenças crónicas.

Neste contexto, é igualmente frequentemente citado o Okinawa Centenarian Study. A população de Okinawa apresenta o maior rácio de centenários (saudáveis) do planeta (50/100.000 vs 10-20/100.000 nos USA) e como tal do maior interesse para estudar os factores que potenciam essa longevidade. Um dos factores identificados (para além dum nível apreciável de actividade física e interação social) foi o facto das populações acima dos 70 anos ingerirem cerca de 11% de calorias abaixo (aproximadamente 1785kcal/dia o que constitui uma restrição calórica muito moderada) do que seria recomendado para manutenção do seu peso corporal (de acordo com a equação Harris-Benedict), contudo numa dieta rica em nutrientes (Wilcox et al., 2006).

15978601_1499898363357125_841027663_n * Os habitantes de Okinawa deverão ter o rácio mais elevado de centenários em todo o mundo com 50/100.000. 

O que podemos fazer para viver mais tempo e melhor é a minha principal motivação intrínseca. Como referi, as nossas escolhas em relação ao tipo de exercício físico, alimentos que ingerimos e outros factores relacionados com o estilo de vida podem condicionar quanto tempo vivemos e (porventura mais importante) quão saudáveis e funcionais vivemos. Na segunda parte deste artigo, abordarei alguns mecanismos pelos quais as intervenções nutricionais como a restrição calórica ou o jejum intermitente podem conduzir a benefícios para a saúde. E na terceira parte, abordarei possíveis implicações e aplicações práticas da prática de restrição calórica ou jejum, bem como quais as populações que podem beneficiar mais dessas estratégias nutricionais e as que as devem evitar.

Fiquem por aí!

Nuno Correia

Bibliografia e Referências

Dröge W., 2009. Avoiding the First Cause of Death. New York, Bloomington. iUniverse, Inc.

Harman D., 1988. Free radicals in aging. Mol Cell Biochem. Dec; 84(2), pp.155-161.

Harman D., 2006. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. May;1067, pp.10-21.

Kitada, M. & Koya, D., 2013b. SIRT1 in Type 2 Diabetes: Mechanisms and Therapeutic Potential. Diabetes & metabolism journal, 37(5), pp.315–25.

Lindeberg, S., 2010. Food and Western Disease: Health and Nutrition from an Evolutionary Perspective. Oxford, United Kingdom: Wiley-Blackwell.

Martin, B., Mattson, M.P. & Maudsley, S., 2006. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing research reviews, 5(3), pp.332–53.

Masoro.E. L., 2002. Caloric Restriction: A Key to Understanding and Modulating Aging. Texas, USA: ELSEVIER.

Robertson, L.T. & Mitchell, J.R., 2013. Benefits of short-term dietary restriction in mammals. Experimental gerontology, 48(10), pp.1043–8.

Shay J.W., Wright W.E. 2000. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. Oct;1(1), pp.72-76.

Zhang D. et al., 2013. Homocysteine-related hTERT DNA demethylation contributes to shortened leukocyte telomere length in atherosclerosis. Atherosclerosis. Nov; 231(1), pp.173-179.

Zhang D.H., Wen X.M., Zhang L. &  Cui W., 2014. DNA methylation of human telomerase reverse transcriptase associated with leukocyte telomere length shortening in hyperhomocysteinemia-type hypertension in humans and in a rat model. Circ J. 78(8), pp.1915-1923.

Wilcox D.C. et al., 2006. Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology  7, pp.173–177.